Skip to main content
Log in

Biosynthesis of poly-β-hydroxybutyrate (PHB) with a high molecular mass by a mutant strain of Azotobacter vinelandii (OPN)

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to characterize the influence of the aeration conditions on the production of PHB and its molecular mass in a mutant strain of Azotobacter vinelandii (OPN), which carries a mutation on ptsN, the gene encoding enzyme IIANtr, previously shown to increase the accumulation of PHB. Cultures of A. vinelandii wild-type strain OP and its mutant derivative strain OPN were grown in 500-mL flasks, containing 100 and 200 mL of PY sucrose medium. PHB production and its molecular mass were analyzed at the end of the culture. The molecular mass (MM) was significantly influenced by the aeration conditions and strain used. A polymer with a higher molecular weight was produced under low aeration conditions for both strains. A maximal molecular mass of 2,026 kDa (equivalent to 3,670 kDa measured by GPC) was obtained with strain OPN cultured under low-aeration conditions, reaching a value two-fold higher than that obtained from the parental strain OP (MM = 1,013 kDa) grown under the same conditions. Aeration conditions and the ptsN mutation influence the molecular mass of the PHB produced by A. vinelandii affecting in turn its physico-chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aldor I, Keasling J (2003) Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Curr Opin Biotechnol 14:475–483

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Page W (1994) Effect of substrate on the molecular weight of of poly-β-hydroxybutyrate produced by Azotobacter vinelandii UWD. Biotechnol Lett 16(2):155–160

    Article  CAS  Google Scholar 

  • Dominguez-Diaz M, Romo-Uribe A (2012) Viscoelastic behavior of biodegradable polyhydroxyalkanoates. Bioinspired Biomim Nanobiomaterials 1:214–220. doi:10.1557/opl.2011.555

    Article  CAS  Google Scholar 

  • Dominguez-Diaz M, Flores A, Cruz-Silva R, Romo-Uribe A (2011) Kinetics of crystallization of biodegradable PHA copolymers: a combined X-ray scattering and micro-indentation study. Mater Res Soc Symp Proc 1301

  • Galindo E, Peña C, Nuñez C, Segura D, Espín G (2007) Molecular and Bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii. Microbiol Cell Fact 6(7):1–16

    Google Scholar 

  • Hahn KS, Chang KY, Kim SB, Chang NH (1994) Optimization of microbial Poly(3-hydroxybutyrate) recovery using dispersions of sodium hypochlorite solution and chloroform. Biotechnol Eng 44:256–261

    CAS  Google Scholar 

  • Hernandez-Eligio A, Moreno S, Castellanos M, Castañeda M, Nuñez C, Muriel-Millan L, Espín G (2012) RsmA post-transcriptionally controls PhbR expression and polyhydroxybutyrate biosynthesis in Azotobacter vinelandii. Microbiology 158:1953–1963

    Article  CAS  PubMed  Google Scholar 

  • Iwata T (2005) Strong fibers and films of microbial polyesters. Macromol Biosci 5(8):689–701

    Article  CAS  PubMed  Google Scholar 

  • Karr D, Waters J, Emerich D (1983) Analysis of poly-β-hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection. Appl Environ Microbiol 46:1339–1344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khanna S, Srivastava A (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619

    Article  CAS  Google Scholar 

  • Klimek J, Ollis D (1980) Extracellular microbial polysaccharides: kinetics of Pseudomonas sp. Azotobacter vinelandii, and Aureobasidium pullulans batch fermentations. Biotechnol Bioeng 22:2321–2342

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall R (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Madison L, Huisman G (1999) Metabolic engineering of poly(3-Hydroxyalkanoates): 16 from DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marchessault RH, Okamura K, Su CJ (1970) Physical propierties of poly(β-Hydroxybutyrate). Macromolecules 3(6):735–740

    Article  CAS  Google Scholar 

  • Miller G (1959) Use of dinitrosalicylic acid reagent for determination of reducting sugars. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  • Myshkina VL, Nikolaeva DA, Makhina TK, Bonartseva AP, Filatova EV, Ruzhitsky AO, Bonartseva GA (2008) Effect of growth conditions on the molecular weight of Poly-3-hydroxybutyrate Produced By Azotobacter chroococcum 7B. Appl Biochem Microbiol 44(5):482–486

    Article  CAS  Google Scholar 

  • Noguez R, Segura D, Moreno S, Hernandez A, Juarez K, Espin G (2008) Enzyme INtr, NPr and IIA Ntr are involved in regulation of the poly-β-hydroxybutyrate biosynthetic genes in Azotobacter vinelandii. J Mol Microbiol Biotechnol 15:244–254

    Article  CAS  PubMed  Google Scholar 

  • Peña C, Campos N, Galindo E (1997) Changes in alginate molecular mass distributions, broth viscosity and morphology of Azotobacter vinelandii cultured in shake flasks. Appl Microbiol Biotechnol 48:510–515

    Article  Google Scholar 

  • Peña C, Galindo E, Peter C, Büchs J (2007) Evolution of the specific power consumption and oxygen transfer rate in alginate-producing cultures of Azotobacter vinelandii conducted in shake flasks. Biochem Eng J 36:73–80

    Article  Google Scholar 

  • Peña C, Galindo E, Peter C, Büchs J (2011) The viscosifying power, degree acetylation and molecular mass of the alginate produced by Azotobacter vinelandii in shake flasks are determined by the oxygen transfer rate. Process Biochem 46:290–297

    Article  Google Scholar 

  • Pflüger-Grau K, Görke B (2010) Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol 18:205–214

    Article  PubMed  Google Scholar 

  • Quagliano JC, Miyazaki SS (1997) Effect of aeration and carbon/nitrogen ratio on the molecular mass of the biodegradable polymer poly(3-hydroxybutyrate) obtained from Azotobacter chroococcum 6B. Appl Microbiol Biotechnol 48:662–664

    Article  CAS  Google Scholar 

  • Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, New York

    Google Scholar 

  • Ryu WH, Cho KS, Goodrich PR, Park CH (2008) Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD using swine wastewater: effect of supplements glucose, yeast extract, and inorganic salts. Biotechnol Bioeng 13:651–658

    CAS  Google Scholar 

  • Segura D, Espín G (1998) Mutational inactivation of a gene homologous to Escherichia coli ptsP affects poly-beta-hydroxybutyrate accumulation and nitrogen fixation in Azotobacter vinelandii. J Bacteriol 180:4790–4798

    CAS  PubMed Central  PubMed  Google Scholar 

  • Segura D, Espín G (2004) Inactivation of pycA, encoding pyruvate carboxylase activity, increases poly-beta-hydroxybutyrate accumulation in Azotobacter vinelandii on solid medium. Appl Microbiol Biotechnol 65:414–418

    Article  CAS  PubMed  Google Scholar 

  • Segura D, Guzmán J, Espín G (2003) Azotobacter vinelandii mutants that overproduce poly-beta-hydroxybutyrate or alginate. Appl Microbiol Biotechnol 63:159–163

    Article  CAS  PubMed  Google Scholar 

  • Segura D, Vite O, Romero Y, Moreno S, Castaneda M, Espin G (2009) Isolation and characterization of Azotobacter vinelandii mutants impaired in Alkylresorcinol Synthesis: alkylresorcinols are not essential for cysts desiccation resistance. J Bacteriol 191:3142–3148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ward IM (1971) Mechanical properties of solid polymers. Wiley, New York

    Google Scholar 

  • Williams S, Martin D (2005) Applications of polyhydroxyalkanoates (PHA) in medicine and pharmacy. Biopolymers Online. doi:10.1002/3527600035.bpol4004

  • Zhang YX, Xin JY, Song H, Chun-gu X (2008) Biosynthesis of poly-3-hydroxybutyrate with a high molecular weight by methanotroph from methane and methanol. J Nat Gas Chem 17:103–109

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the technical help of Maraolina Dominguez-Diaz (LNyC, UNAM) and Modesto Millán (IBT, UNAM). This work was partially financed by DGAPA-UNAM (grants IT209411-3 and IN110310), and CONACyT under CIAM2008 program (grant 107294).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña, C., López, S., García, A. et al. Biosynthesis of poly-β-hydroxybutyrate (PHB) with a high molecular mass by a mutant strain of Azotobacter vinelandii (OPN). Ann Microbiol 64, 39–47 (2014). https://doi.org/10.1007/s13213-013-0630-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-013-0630-0

Keywords

Navigation