Skip to main content
Log in

Diversity of cultivable bacteria associated with fruiting bodies of wild Himalayan Cantharellus spp.

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The cultivable bacteria associated with fruiting bodies of different Cantharellus species collected from the forests of the north-western Himalayan region were studied. Repetitive extragenic palindromic (REP) and BOX-PCR fingerprinting analyses revealed that different strains were distributed within Cantharellus species. The number of bacteria varied from 0.5 to 1.1 × 103 CFU/g of fresh tissue for different fruiting bodies. Thirty different operational taxonomic units (OTUs) were found among the bacteria analyzed. 16S rRNA sequence analysis revealed that most of the bacteria associated with different Cantharellus species were Gammaproteobacteria belong to the genera Hafnia, Enterobacter, Ewingella, Rahnella, Stenotrophomonas, and Pseudomonas, and γ-proteobacterium, followed by Betaproteobacteria (Alcaligenes) and Firmicutes, (Bacillus). The most common bacteria associated with the majority of Cantharellus species were Hafnia and Stenotrophomonas species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike H (1981) Likelihood of a model and information criteria. J Econometrics 16:3–14

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang S, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Araujo W-L, Maccheroni W, Aguilar-Vildoso C-I, Barroso P, Saridakis H, Azevedo J (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236

    Article  PubMed  CAS  Google Scholar 

  • Barbieri E, Bertini L, Rossi I, Ceccaroli P, Saltarelli R, Guidi C, Zambonelli A, Stocchi V (2005) New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad. FEMS Microbiol Lett 247 :23–35.

    Google Scholar 

  • Bending GD, Poole EJ, Whipps JM, Read DJ (2002) Characterization of bacteria from Pinus sylvestris–Suillus luteus mycorrhizas and their effects on root–fungus interactions and plant growth. FEMS Microbiol Ecol 39:219–227

    PubMed  CAS  Google Scholar 

  • Burke DJ, Dunham SM, Kretzer AM (2008) Molecular analysis of bacterial communities associated with the roots of Douglas fir (Pseudotsuga menziesii) colonized by different ectomycorrhizal fungi. FMES Mirobiol Ecol 65:299–309

    Article  CAS  Google Scholar 

  • Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249

    Article  PubMed  CAS  Google Scholar 

  • Dahm H, Wrótniak W, Strzelczyk E, Li C-Y, Bednarska E (2005) Diversity of culturable bacteria associated with fruiting bodies of ectomycorrhizal fungi. Phytopathol Polon 38:51–62

    Google Scholar 

  • Danell E, Camacho FJ (1997) Successful cultivation of the golden chanterelle. Nature 385:303

    Article  CAS  Google Scholar 

  • Danell E, Alstrom S, Ternstrom A (1993) Pseudomonas fluorescens in association with fruit bodies of the ectomycorrhizal mushroom Cantharellus cibarius. Mycol Res 97:1148–1152

    Article  Google Scholar 

  • Dunham SM, O’Dell TE, Molina R (2003) Analysis of nrDNA sequences and microsatellite allele frequencies reveals a cryptic chanterelle species Cantharellus cascadensis sp. nov. from the American Pacific Northwest. Mycol Res 107:1163–1177

    Article  PubMed  CAS  Google Scholar 

  • Duponnois R, Garbaye J (1991) Effect of dual inoculation of Douglas fir with the ectomycorrhizal fungus Laccaria laccata and mycorrhization helper bacteria (MHB) in two bare root forest nurseries. Plant Soil 138:169–176

    Article  Google Scholar 

  • Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhial symbiosis of Australian Acacia species. Mycorrhiza 13:85–91

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945

    Article  PubMed  CAS  Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JC, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328

    Article  PubMed  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  PubMed  CAS  Google Scholar 

  • Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-Fungal Interactions: Hyphens between Agricultural, Clinical, Environmental, and Food Microbiologists. Microbiol Mol Biol Rev 75:583–609

    Article  PubMed  CAS  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Gazzanelli G, Malatesta M, Pianetti A, Baffone W, Stocchi V, Citterio B (1999) Bacteria associated to fruit bodies of ectomycorrhizal fungus Tuber borchii Vittad. Symbiosis 26:211–222

    Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopatogenic bacteria. Appl Environ Microbiol 61:793–796

    PubMed  CAS  Google Scholar 

  • Khetmalas MB, Egger KN, Massicotte HB, Tackaberry LE, Clapperton MJ (2002) Bacterial diversity associated with subalpine fir (Abies lasiocarpa) ectomycorrhizae following wildfire and salvage-logging in central British Columbia. Can J Microbiol 48:611–625

    Article  PubMed  CAS  Google Scholar 

  • Koeuth T, Versalovic J, Lupski JR (1995) Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res 5:408–418

    Article  PubMed  CAS  Google Scholar 

  • Kreig NR, Holt JG (1984) Bergey’s Manual of Systematic Bacteriology, vol. I. Williams and Wilkins, Baltimore

    Google Scholar 

  • Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microbial Ecol 40:43–56

    CAS  Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751

    Article  Google Scholar 

  • Rademaker JL, Hoste B, Louws FJ, Kersters K, Swings J, Vauterin L, Vauterin P, de Bruijn FJ (2000) Comparison of AFLP and rep-PCR genomic fingerprinting with DNA–DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol 50:665–677

    Article  PubMed  CAS  Google Scholar 

  • Rangel-Castro JI, Danell E, Pfeffer PE (2002) A 13C-NMR study of exudation and storage of carbohydrates and amino acid in the ectomycorrhizal edible mushroom Cantharellus cibarius. Mycologia 94:1990–1991

    Article  Google Scholar 

  • Rillig MC, Mummey DL, Ramsey PW, Klironomos JN, Gannon JE (2006) Phylogeny of arbuscular mycorrhizal fungi predicts community composition of symbiosis-associated bacteria. FEMS Microbiol Ecol 57:389–395

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Heulsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Rosenblueth M, Martínez Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microb Interact 19:827–837

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sbrana C, Bagnoli G, Bedini S, Filippi C, Giovannetti M, Nuti MP (2000) Adhesion to hyphal matrix and antifungal activity of Pseudomonas strains isolated from Tuber borchii ascoscarps. Can J Microbiol 46:259–268

    PubMed  CAS  Google Scholar 

  • Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216

    Article  PubMed  CAS  Google Scholar 

  • Timonen S, Jørgensen KS, Haahtela K, Sen R (1998) Bacterial community structure at defined locations of Pinus sylvestris–Suillus bovinus and Pinus sylvestris–Paxillus involutus mycorrhizospheres in dry pine forest humus and nursery peat. Can J Microbiol 44:499–513

    CAS  Google Scholar 

  • Varese GC, Trotta PA, Scannerini S, Luppi-Mosca AM, Martinotti G (1996) Bacteria associated with Suillus grevillei sporocarps and ectomycorrhizae and their effects on in vitro growth of the mycobiont. Symbiosis 21:129–147

    Google Scholar 

  • Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based Polymerase Chain Reaction. Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to TIFAC-CORE, Thapar University, Patiala for the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sudhakara Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumari, D., Reddy, M.S. & Upadhyay, R.C. Diversity of cultivable bacteria associated with fruiting bodies of wild Himalayan Cantharellus spp.. Ann Microbiol 63, 845–853 (2013). https://doi.org/10.1007/s13213-012-0535-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0535-3

Keywords

Navigation