Skip to main content
Log in

Optimization of an inducible, chromosomally encoded benzo [a] pyrene (BaP) degradation pathway in Bacillus subtilis BMT4i (MTCC 9447)

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Benzo [a] pyrene (BaP), a pentacyclic polyaromatic hydrocarbon, is 1 of the 12 target compounds defined in the new US Environmental Protection Agency strategy for controlling persistent, bioaccumulative, and toxic pollutants. We previously isolated a novel strain Bacillus subtilis BMT4i capable of utilizing BaP as sole source of carbon and energy. The present study investigated (1) whether the BaP degradation pathway is inducible, and (2) whether it is plasmid-encoded. Furthermore, physical (temperature, pH, and UV-induced photolysis of BaP) and chemical (BaP concentration, surfactant, and ionic strength) parameters for BaP degradation were determined. Our findings revealed a ten-fold enhanced degradation rate in induced vs non-induced culture in the presence of chloramphenicol, suggesting that the BaP degradation pathway is inducible. Physical methods demonstrated the lack of plasmid in BMT4i—a result further complimented by plasmid curing, which had no effect on BaP degradability thus a chromosomal localization can be inferred. Maximum BaP degradation in BMT4i was observed under the following physical and chemical conditions: 30°C, pH 8.0, UV-induced photolysis of BaP-basal salt mineral medium (BSM), 150 μg/ml BaP, 0.01% Tween-20, and 400–1,800 μM MgSO4. These conditions could be beneficial in the development and standardization of effective bioremediation protocols using B. subtilis BMT4i.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bach OD, Kim SJ, Choui SC, Oh YS (2005) Enhancing the intrinsic bioremediation of PAHs-contaminated anoxic estuarine sediments with biostimulating agents. J Microbiol 43(4):319–324

    CAS  PubMed  Google Scholar 

  • Blumer M (1976) Polycyclic aromatic hydrocarbons in nature. Sci Am 234(3):35–45

    Article  CAS  PubMed  Google Scholar 

  • California Environmental Protection Agency (1997) Public health goal for Benzo [a] Pyrene in drinking water. Office of Environmental Health Hazard Assessment, Berkeley, CA, pp 1–42

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Demaneche S, Meyer C, Micoud J, Louwagie M, Willison JC, Jouanneau Y (2004) Identification and functional analysis of two aromatic-ring-hydroxyalting dioxygenases from Sphingomonas strain that degrades various polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70(11):6714–6725

    Article  CAS  PubMed  Google Scholar 

  • Grosser RJ, Warshawsky D, Vestal JR (1991) Indigenous and enhanced mineralization of pyrene, benzo[a] pyrene and carbazole in soils. Appl Environ Microbiol 57:3462–3469

    CAS  PubMed  Google Scholar 

  • Gunderson K, Chu G (1991) Pulsed-field electrophoresis of megabase-sized DNA. Mol Cell Biol 11:3348–3354

    CAS  PubMed  Google Scholar 

  • Habe H, Omori T (2003) Genetic of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    Article  CAS  PubMed  Google Scholar 

  • Heitkamp MA, Cerniglia CE (1987) The effects of chemical structure and exposure on the microbial degradation of polycyclic aromatic hydrocarbons in freshwater and estuarine ecosystems. Environ Toxicol Chem 6:535–546

    Article  CAS  Google Scholar 

  • Heitkamp MA, Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl Environ Microbiol 54:1612–1614

    CAS  PubMed  Google Scholar 

  • Heitkamp MA, Cerniglia CE (1989) Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl Environ Microbiol 55:1968–1973

    CAS  PubMed  Google Scholar 

  • Heitkamp MA, Franklin W, Cerniglia CE (1988) Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl Environ Microbiol 54:2549–2555

    CAS  PubMed  Google Scholar 

  • Hsu GW, Huang X, Luneva NP, Geacintov NE, Beese LS (2005) Structure of a high fidelity DNA polymerase bound to a Benzo [a] pyrene adducts that blocks replication. J Biol Chem 280(50):3764–3770

    CAS  PubMed  Google Scholar 

  • Huys G, Haene KD, Swings J (2006) Genetic basis of tetracycline and minocycline resistance in potentially probiotic Lactobacilus plantarum CCUG 43738. Antimicrob Agents Ch 50(4):1550–1551

    Article  CAS  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88

    Article  CAS  Google Scholar 

  • Juhasz AL, Stanley GA, Britz ML (2002) Metabolite repression inhibits degradation of benzo[a]pyrene and dibenz[a, h]anthracene by Stenotrophomonas maltophilia VUN 10, 003. J Ind Microbiol Biotechnol 28:88–96

    CAS  PubMed  Google Scholar 

  • Kalf DF, Crommentuijn T (1997) Environment quality objectives for 10 polycyclic aromatic hydrocarbons. Ecotoxicol Environ Safe 36:89–97

    Article  CAS  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high molecular weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182(8):2059–2067

    Article  CAS  PubMed  Google Scholar 

  • Khan AA, Wang RF, Cao WW, Doerge DR, Wennerstrom D, Cerniglia CE (2001) Molecular cloning, nucleotide sequence, and expression of genes encoding a polycylic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl Envirion Microbiol 67(8):3577–3585

    Article  CAS  PubMed  Google Scholar 

  • Khan AA, Kim SJ, Paine DD, Cerniglia CE (2002) Classification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Mycobacterium sp. strain PYR-1, as Mycobacterium vanbaalenii sp. Int J Syst Evol Microbiol 52:1997–2002

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Kweon O, Freeman JP, Jones RC, Adjei MD, Jhoo JW, Edmondson RD, Cerniglia CE (2006) Molecular cloning and expression of genes encoding a novel dioxygenase involved in low-and high molecular-weight polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 72:1045–1054

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Kweon O, Jones RC, Freeman JP, Edmondson RD, Cerniglia CE (2007) Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol 189:464–472

    Article  CAS  PubMed  Google Scholar 

  • Kiyohara H, Torigoe S, Kaida N, Asaki T, Iida T, Hayashi H, Takizawa N (1994) Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J Bacteriol 176:2439–2443

    CAS  PubMed  Google Scholar 

  • Krivobok S, Kuony S, Meyer C, Louwagie M, Willison JC, Jouanneau Y (2003) Identification of pyrene induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases. J Bacteriol 185(13):3828–3841

    Article  CAS  PubMed  Google Scholar 

  • Lehto KM, Puhakka JA, Lemmetyinen H (2003) Biodegradation of selected UV-irradiated and non-irradiated polycyclic aromatic hydrocarbons (PAHs). Biodegradation 14:249–263

    Article  CAS  PubMed  Google Scholar 

  • Lily MK, Bahuguna A, Dangwal K, Garg V (2009) Degradation of Benzo [a] Pyrene by a novel strain Bacillus subtilis BMT4i (MTCC 9447). Braz J Microbiol 40(4):884–892

    Article  Google Scholar 

  • Mallick S, Chatterjee S, Dutta TK (2007) A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hyroxy-1-naphthoic acid: formation of trans-2, 3-dioxo-5-(2′-hydroxyphenyl)-pent-4-enoic acid. Microbiology 153:2104–2115

    Article  CAS  PubMed  Google Scholar 

  • Menn FM, Applegate BM, Sayler GS (1993) NAH Plasmid mediated catabolism of anthracene and phenanthrene to naphthoic acids. Appl Environ Microbiol 59:1938–1942

    CAS  PubMed  Google Scholar 

  • Miller RM, Singer GM, Rosen JD, Bartha R (1988) Photolysis primes biodegradation of Benzo[a] pyrene. Appl Environ Microbiol 1724–1730

  • Mojgani N, Ashtiani MP, Khanian SE (2006) Plasmid-associated lactocin RN78 production in a Lactobacillus RN78 strain isolated from dairy sample in Iran. Med J Islam World Acad Sci 16(1):19–24

    Google Scholar 

  • Moody JD, Fu PP, Freeman JP, Cerniglia CE (2004) Degradation of benzo[a] pyrene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 70:13–19

    Article  CAS  Google Scholar 

  • Nadarjah N, Van Hamme J, Pannu J, Singh A, Ward O (2002) Enhanced transformation of polycyclic aromatic hydrocarbons using a combined Fenton’s reagent treatment and surfactants. Appl Microbiol Biotechnol 59(4–5):540–544

    Google Scholar 

  • NTP-National Toxicological Program (2002) Tenth Report on Carcinogens. Report of the NTP on Carcinogens. National Academy Press, Washington

    Google Scholar 

  • Pedraza RO, Ricci JCD (2002) In-well cell lysis technique reveals two new megaplasmids of 103.0 and 212.6 MDa in the multiple plasmid-containing strain V517 of Escherichia coli. Lett Appl Microbiol 34:130–133

    Article  CAS  PubMed  Google Scholar 

  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao Q (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    Article  CAS  PubMed  Google Scholar 

  • Piskonen R, Itavaara M (2004) Evaluation of chemical pretreatment of contaminated soil for improved PAH bioremediation. Appl Microbiol Biotechnol 65(5):627–634

    Article  CAS  PubMed  Google Scholar 

  • Providenti M, Lee H, Trevors J (1993) Selected factors limiting the microbial degradation of recalcitrant compounds. J Ind Microbiol Biotechnol 12:379–393

    CAS  Google Scholar 

  • Rasool SA, Ahmad A, Khan S, Wahab A (2003) Plasmid borne antibiotic resistance factors among indigenous Klebsiella. Pak J Bot 35(2):243–248

    Google Scholar 

  • Renner R (1999) EPA to strengthen persistent, bioaccumulative, and toxic pollutant controls—mercury first to be targeted. Environ Sci Technol 33:62

    Google Scholar 

  • Sanseverino J, Applegate BM, King JMH, Sayler GS (1993) Plasmid-mediated mineralization of naphthalene, phenathrene, and anthracene. Appl Environ Microbiol 59:1931–1937

    CAS  PubMed  Google Scholar 

  • Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6:278–309

    Article  CAS  PubMed  Google Scholar 

  • Shuttleworth KL, Cerniglia CE (1995) Environmental aspects of PAH biodegradation. Appl Biochem Biotechnol 54:291–302

    Article  CAS  PubMed  Google Scholar 

  • Sims RC, Overcash MR (1983) Fate of polynuclear aromatic compounds (PNAs) in soil-plant system. Residue Rev 88:1–68

    CAS  Google Scholar 

  • Smith CL, Klco SR, Cantor CR (1988) Genome analysis: a practical approach. IRL, Oxford, pp 41–60

  • Schneider J, Grosser R, Jayasimhulu K, Xu W, Warshawsky D (1996) Degradation of pyrene, Benzo[a] anthracene and Benzo[a]pyrene by Mycobacterium sp. strain RJG II-135, isolated from a former coal gasification site. Appl Environ Microbiol 62:13–19

    CAS  PubMed  Google Scholar 

  • Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60:258–263

    CAS  PubMed  Google Scholar 

  • ATSDR-Agency for Toxic Substances and Disease Registry (1990) Toxicological profile for polycyclic aromatic hydrocarbons. U.S. Department of Health and Human services, Washington

    Google Scholar 

  • Yang Y, Chen RF, Shiaris MP (1994) Metabolism of naphthalene fluorene and phenanthrene: preliminary characterization of a cloned gene cluster from Pseudomonas putida NCIB9816. J Bacteriol 176:2158–2164

    CAS  PubMed  Google Scholar 

  • Ye D, Siddiqi MA, Maccubbin AE, Kumar S, Sikka HC (1996) Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis. Environ Sci Technol 30:136–142

    Article  CAS  Google Scholar 

  • Zhang L, Li P, Gong Z, Li X (2008) Photocatalytic degradation of polycyclic hydrocarbons on soil surfaces using TiO2 under UV light. J Hazard Mater 158:478–484

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Modern Institute of Technology, Rishikesh, Uttarakhand, India and Uttarakhand Council of Science and Technology, Uttarakhand, India (UCOST; grant no. UCS and T/R and D/LS-46/06-07), which are gratefully acknowledged. We also thank Prof Aditya Shastri, Vice Chancellor, Banasthali University, Rajasthan, India for providing facilities in the Department of Bioscience and Biotechnology at this university. We gratefully acknowledge Dr. Yogesh Shouche, Scientist E and Mr. Jay Siddharth, Senior Research Fellow (SRF), Molecular Biology Laboratory, National Centre for Cell Science (NCCS), Pune, India for providing the pulse field gel electrophoresis (PFGE) facility and invaluable help and cooperation during this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koushalya Dangwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lily, M.K., Bahuguna, A., Dangwal, K. et al. Optimization of an inducible, chromosomally encoded benzo [a] pyrene (BaP) degradation pathway in Bacillus subtilis BMT4i (MTCC 9447). Ann Microbiol 60, 51–58 (2010). https://doi.org/10.1007/s13213-009-0010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-009-0010-y

Keywords

Navigation