Skip to main content
Log in

Homobifunctional Imidoester Combined Black Phosphorus Nanosheets Used as Cofactors for Nucleic Acid Extraction

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Studies on nucleic acid-based diagnostics technology have been widely applied to clinical disease diagnosis. In particular, practical effective techniques for the isolation and purification of nucleic acids from pathogenic cells are crucial to ensure the accuracy of analysis. However, numerous organic reagents from the current commercial nucleic acid extraction kits have varied potential side effects in early and further specific diagnosis. Here, we present an easy-to-operate assay for nucleic acid extraction through an outstanding two-dimensional material—black phosphorus (BP), which has attracted significant interest in the diagnosis and treatment of diseases due to its high charge carrier mobility, strong optical absorption, and excellent bioactivity. With the characterization of BP, we proposed an optimized nucleic acid extraction system. A portable-safe single 808 nm near-infrared (NIR) laser was used for the BP thermal heating system for nucleic acid extraction without any larger thermal instrument. We found that the purity and quantity of nucleic acid extracted in the BP-based system were three times higher than in a commercial kit. We also modified the nanosized BP coated with homobifunctional imidoester (HI) to enhance the biomolecule binding with both biocompatibility and surface-crosslinking abilities. We believe that the BP-HI-laser system could be a good candidate for designing nucleic acid extraction for disease diagnosis systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kurozumi, S., Yamaguchi, Y., Kurosumi, M., Ohira, M., Matsumoto, H., Horiguchi, J.: Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J. Hum. Genet. 62(1), 15–24 (2017)

    Article  CAS  Google Scholar 

  2. Huang, H.S., Tsai, C.L., Chang, J., Hsu, T.C., Lin, S., Lee, C.C.: Multiplex PCR system for the rapid diagnosis of respiratory virus infection: systematic review and meta-analysis. Clin. Microbiol. Infect. 24(10), 1055–1063 (2018)

    Article  CAS  Google Scholar 

  3. Qiao, Z., Seo, H., Liu, H., Cha, H.H., Kim, J.Y., Kim, S.H., et al.: Simple and sensitive diagnosis of invasive aspergillosis using triphasic DE−ZnO−APDMS microparticle composite. Sens. Actuators B Chem. 346, 130487 (2021)

    Article  CAS  Google Scholar 

  4. Qian, Y., Yuan, W.E., Cheng, Y., Yang, Y., Qu, X., Fan, C.: Concentrically integrative bioassembly of a three-dimensional black phosphorus nanoscaffold for restoring neurogenesis, angiogenesis, and immune homeostasis. Nano Lett. 19(12), 8990–9001 (2019)

    Article  CAS  Google Scholar 

  5. Kim, S.M., Kim, J., Noh, S., Sohn, H., Lee, T.: Recent development of aptasensor for influenza virus detection. Biochip J. 14, 1–13 (2020)

    Article  Google Scholar 

  6. Kim, S., Lee, J., Koo, B., Kwon, D., Jeon, S., Shin, Y., et al.: Floating magnetic membrane for rapid enrichment of pathogenic bacteria. BioChip J. 15(1), 61–68 (2021)

    Article  CAS  Google Scholar 

  7. Huang, C., Hu, S., Zhang, X., Cui, H., Wu, L., Yang, N., et al.: Sensitive and selective ctDNA detection based on functionalized black phosphorus nanosheets. Biosens. Bioelectron. 165, 112384 (2020)

    Article  CAS  Google Scholar 

  8. Liu, Q., Fan, T., Zheng, Y., Yang, S.-l, Yu, Z., Duo, Y., et al.: Immunogenic exosome-encapsulated black phosphorus nanoparticles as an effective anticancer photo-nanovaccine. Nanoscale 12(38), 19939–19952 (2020)

    Article  CAS  Google Scholar 

  9. Nijhuis, R., Guerendiain, D., Claas, E., Templeton, K.: Comparison of ePlex respiratory pathogen panel with laboratory-developed real-time PCR assays for detection of respiratory pathogens. J. Clin. Microbiol. 55(6), 1938–1945 (2017)

    Article  CAS  Google Scholar 

  10. Lee, W.S., Ahn, J., Jung, S., Lee, J., Kang, T., Jeong, J.: Biomimetic nanopillar-based biosensor for label-free detection of influenza A virus. Biochip J. 15, 1–8 (2021)

    Article  Google Scholar 

  11. Kim, J., Hwang, E.-S.: Multiplexed diagnosis of four serotypes of dengue virus by real-time RT-PCR. BioChip J. 14(4), 421–428 (2020)

    Article  CAS  Google Scholar 

  12. Jang, Y.O., Lee, H.J., Koo, B., Cha, H.H., Kwon, J.-S., Kim, J.Y., et al.: Rapid COVID-19 molecular diagnostic system using virus enrichment platform. Biosensors 11(10), 373 (2021)

    Article  CAS  Google Scholar 

  13. Katevatis, C., Fan, A., Klapperich, C.M.: Low concentration DNA extraction and recovery using a silica solid phase. PLoS One 12(5), e0176848 (2017)

    Article  Google Scholar 

  14. Kim, S., Lee, J., Koo, B., Kwon, D., Jeon, S., Shin, Y., Joo, J.: Floating magnetic membrane for rapid enrichment of pathogen bacterial. BioChip J. 15, 61–68 (2021)

    Article  CAS  Google Scholar 

  15. Liu, H., Dao, T.N.T., Koo, B., Jang, Y.O., Shin, Y.: Trends and challenges of nanotechnology in self-test at home. TrAC Trends Anal. Chem. 144, 116438 (2021)

    Article  CAS  Google Scholar 

  16. Petralia, S., Barbuzzi, T., Ventimiglia, G.: Polymerase chain reaction efficiency improved by water soluble β-cyclodextrins capped platinum nanoparticles. Mater. Sci. Eng., C 32(4), 848–850 (2012)

    Article  CAS  Google Scholar 

  17. Zhao, F., Koo, B., Liu, H., Jin, C.E., Shin, Y.: A single-tube approach for in vitro diagnostics using diatomaceous earth and optical sensor. Biosens. Bioelectron. 99, 443–449 (2018)

    Article  CAS  Google Scholar 

  18. Liu, H., Zhao, F., Koo, B., Luan, Y., Zhong, L., Yun, K., et al.: Dimethyl 3, 3′-dithiobispropionimidate (DTBP) as a cleavable disulfide-based polymer to encapsulate nucleic acids in biological sample preparation. Sens. Actuators B Chem. 288, 225–231 (2019)

    Article  CAS  Google Scholar 

  19. Qiao, Z., Liu, H., Noh, G.S., Koo, B., Zou, Q., Yun, K., et al.: A simple and rapid fungal DNA isolation assay based on ZnO nanoparticles for the diagnosis of invasive aspergillosis. Micromachines. 11(5), 515 (2020)

    Article  Google Scholar 

  20. Barman, S.C., Sharifuzzaman, M., Zahed, M.A., Park, C., Yoon, S.H., Zhang, S., et al.: A highly selective and stable cationic polyelectrolyte encapsulated black phosphorene based impedimetric immunosensor for Interleukin-6 biomarker detection. Biosens. Bioelectron. 186, 113287 (2021)

    Article  Google Scholar 

  21. Qiao, P., Wang, X.H., Gao, S., Yin, X., Wang, Y., Wang, P.: Integration of black phosphorus and hollow-core anti-resonant fiber enables two-order magnitude enhancement of sensitivity for bisphenol A detection. Biosens. Bioelectron. 149, 111821 (2020)

    Article  CAS  Google Scholar 

  22. Kang, J.S., Ke, M., Hu, Y.: Ionic intercalation in two-dimensional van der Waals materials: in situ characterization and electrochemical control of the anisotropic thermal conductivity of black phosphorus. Nano Lett. 17(3), 1431–1438 (2017)

    Article  CAS  Google Scholar 

  23. Antonatos, N., Bousa, D., Kovalska, E., Sedmidubsky, D., Ruzicka, K., Vrbka, P., et al.: Large-scale production of nanocrystalline black phosphorus ceramics. ACS Appl. Mater. Interfaces. 12(6), 7381–7391 (2020)

    Article  CAS  Google Scholar 

  24. Lee, H.U., Lee, S.C., Won, J., Son, B.-C., Choi, S., Kim, Y., et al.: Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts. Sci. Rep. 5(1), 1–6 (2015)

    Google Scholar 

  25. Qu, G., Xia, T., Zhou, W., Zhang, X., Zhang, H., Hu, L., et al.: Property–activity relationship of black phosphorus at the nano–bio interface: from molecules to organisms. Chem. Rev. 120(4), 2288–2346 (2020)

    Article  CAS  Google Scholar 

  26. Lee, J.Y., Lin, Y.J.: Effect of incorporation of black phosphorus into PEDOT: PSS on conductivity and electron–phonon coupling. Synth. Met. 212, 180–185 (2016)

    Article  CAS  Google Scholar 

  27. Liu, H., Zhao, F., Jin, C.E., Koo, B., Lee, E.Y., Zhong, L., et al.: Large instrument-and detergent-free assay for ultrasensitive nucleic acids isolation via binary nanomaterial. Anal. Chem. 90(8), 5108–5115 (2018)

    Article  CAS  Google Scholar 

  28. Wu, S., Hui, K.S., Hui, K.N.: 2D black phosphorus: from preparation to applications for electrochemical energy storage. Adv. Sci. 5(5), 1700491 (2018)

    Article  Google Scholar 

  29. He, D., Wang, Y., Huang, Y., Shi, Y., Wang, X., Duan, X.: High-performance black phosphorus field-effect transistors with long-term air stability. Nano Lett. 19(1), 331–337 (2018)

    Article  Google Scholar 

  30. Zhou, L., Liu, C., Sun, Z., Mao, H., Zhang, L., Yu, X., et al.: Black phosphorus based fiber optic biosensor for ultrasensitive cancer diagnosis. Biosens. Bioelectron. 137, 140–147 (2019)

    Article  CAS  Google Scholar 

  31. Kong, N., Ji, X., Wang, J., Sun, X., Chen, G., Fan, T., et al.: ROS-mediated selective killing effect of black phosphorus: mechanistic understanding and its guidance for safe biomedical applications. Nano Lett. 20(5), 3943–3955 (2020)

    Article  CAS  Google Scholar 

  32. Jiang, X., Jin, H., Gui, R.: Visual bio-detection and versatile bio-imaging of zinc-ion-coordinated black phosphorus quantum dots with improved stability and bright fluorescence. Biosens. Bioelectron. 165, 112390 (2020)

    Article  CAS  Google Scholar 

  33. Liu, H., Noh, G.S., Luan, Y., Qiao, Z., Koo, B., Jang, Y.O., et al.: A sample preparation technique using biocompatible composites for biomedical applications. Molecules 24(7), 1321 (2019)

    Article  CAS  Google Scholar 

  34. Lee, E.Y., Kim, Y., Koo, B., Noh, G.S., Lee, H., Shin, Y.: A novel nucleic acid amplification system based on nano-gap embedded active disk resonators. Sens. Actuators B Chem. 320, 127351 (2020)

    Google Scholar 

Download references

Funding

This work was supported by the Yonsei University Research Fund of 2021–22-005, Republic of Korea, and also supported by the National Research Foundation of Korea (NRF) (2019R1A2C2084122), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

JKK and YS supervised the project. YS, HL, QZ, and MGK conceived the research. YS, QZ, and HL designed the experiments. YS, QZ, HL, MK, ZQ, and YJ performed the analysis and interpreted the data. BK, MGK, and HL provided chemicals and supported data analysis. J-KK provided comments and suggested appropriate modifications. YS, HL, QZ, and YS wrote and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jun Ki Kim or Yong Shin.

Ethics declarations

Conflicts of interest

The authors declare no Conflicts of interests/Competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zou, Q., Kim, M.G. et al. Homobifunctional Imidoester Combined Black Phosphorus Nanosheets Used as Cofactors for Nucleic Acid Extraction. BioChip J 16, 58–66 (2022). https://doi.org/10.1007/s13206-022-00046-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-022-00046-3

Keywords

Navigation