Skip to main content
Log in

Microdroplet-based cell culture models and their application

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Microfluidic systems offer precisely controlled experimental conditions for efficient study of mammalian cells, ranged from a single cell to matrixbased three-dimensional (3D) in vitro culture models. droplet-based microfluidic system is a robust and highly reproducible device enabling encapsulation of a cell or cells within well-confined microenvironment. Recently, such droplet-based cell culture models have drawn much attention due to their unique properties such that conventional culture systems couldn’t provide. The encapsulation of cells in specifically designed aqueous phase of a microfluidic system can provide profound understand of cell to cell and cell to extracellular matrix interactions, also can be used to regulate various cell behaviors. A droplet-based cell culture system allows better control over confinement for culturing, maintaining, and analyzing cells, such as high-throughput screening. In this review, we discuss recent researches on microdroplet-based 3D cell culture models, and advanced applications of microfluidic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shembekar, N., Chaipan, C., Utharala, R. & Merten, C.A. Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. Lab Chip 16, 1314–1331 (2016).

    Article  CAS  Google Scholar 

  2. Baroud, C.N., Gallaire, F. & Dangla, R. Dynamics of microfluidic droplets. Lab Chip 10, 2032–2045 (2010).

    Article  CAS  Google Scholar 

  3. Teh, S.Y., Lin, R., Hung, L.H. & Lee, A.P. Droplet microfluidics. Lab Chip 8, 198–220 (2008).

    Article  CAS  Google Scholar 

  4. Konry, T., Sarkar, S., Sabhachandani, P. & Cohen, N. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction. Annu. Rev. Biomed. Eng. (2016).

    Google Scholar 

  5. Ying, D. et al. A droplet-based microfluidic device for long-term culture and longitudinal observation of Caenorhabditis elegans. BioChip J. 6, 197–205 (2012).

    Article  CAS  Google Scholar 

  6. Kim, P. et al. Soft lithography for microfluidics: a review. BioChip J. 2, 1–11 (2008).

    Google Scholar 

  7. Eastburn, D.J., Sciambi, A. & Abate, A.R. Identification and genetic analysis of cancer cells with PCR-activated cell sorting. Nucleic Acids Res. 42, e128 (2014).

    Article  Google Scholar 

  8. Akbari, S. & Pirbodaghi, T. A droplet-based heterogeneous immunoassay for screening single cells secreting antigen-specific antibodies. Lab Chip 14, 3275–3280 (2014).

    Article  CAS  Google Scholar 

  9. Mazutis, L. et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8, 870–891 (2013).

    Article  CAS  Google Scholar 

  10. Konry, T., Golberg, A. & Yarmush, M. Live single cell functional phenotyping in droplet nano-liter reactors. Sci. Rep. 3, 3179 (2013).

    Article  Google Scholar 

  11. Brouzes, E. et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl. Acad. Sci. USA 106, 14195–14200 (2009).

    Article  CAS  Google Scholar 

  12. Ng, J., Shin, Y. & Chung, S. Microfluidic platforms for the study of cancer metastasis. Biomed. Eng. Lett. 2, 72–77 (2012).

    Article  Google Scholar 

  13. Sabhachandani, P. et al. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Lab Chip 16, 497–505 (2016).

    Article  CAS  Google Scholar 

  14. McMillan, K.S., McCluskey, A.G., Sorensen, A., Boyd, M. & Zagnoni, M. Emulsion technologies for multicellular tumour spheroid radiation assays. Analyst 141, 100–110 (2016).

    Article  CAS  Google Scholar 

  15. Yoon, S., Kim, J.A., Lee, S.H., Kim, M. & Park, T.H. Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles. Lab Chip 13, 1522–1528 (2013).

    Article  CAS  Google Scholar 

  16. Chan, H.F. et al. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci. Rep. 3, 3462 (2013).

    Google Scholar 

  17. Yu, L., Chen, M.C. & Cheung, K.C. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Lab Chip 10, 2424–2432 (2010).

    Article  CAS  Google Scholar 

  18. Kim, C. Droplet-based microfluidics for making uniform-sized cellular spheroids in alginate beads with the regulation of encapsulated cell number. BioChip J. 9, 105–113 (2015).

    Article  CAS  Google Scholar 

  19. Wang, Y. & Wang, J. Mixed hydrogel bead-based tumor spheroid formation and anticancer drug testing. Analyst 139, 2449–2458 (2014).

    Article  CAS  Google Scholar 

  20. Che, X., Nuhn, J., Schneider, I. & Que, L. High Throughput Studies of Cell Migration in 3D Microtissues Fabricated by a Droplet Microfluidic Chip. Micromachines 7, 84 (2016).

    Article  Google Scholar 

  21. Ma, S. et al. Monodisperse collagen-gelatin beads as potential platforms for 3D cell culturing. J. Mater. Chem. B. 1, 5128 (2013).

    Article  CAS  Google Scholar 

  22. Edd, J.F. et al. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8, 1262–1264 (2008).

    Article  CAS  Google Scholar 

  23. Chokkalingam, V. et al. Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab Chip 13, 4740–4744 (2013).

    Article  CAS  Google Scholar 

  24. Wu, L., Chen, P., Dong, Y., Feng, X. & Liu, B.F. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting. Biomed. Microdevices 15, 553–560 (2013).

    Article  CAS  Google Scholar 

  25. Kulkarni, R.P., Che, J., Dhar, M. & Di Carlo, D. Research highlights: microfluidic single-cell analysis from nucleic acids to proteins to functions. Lab Chip 14, 3663 (2014).

    Article  CAS  Google Scholar 

  26. Taly, V., Pekin, D., El Abed, A. & Laurent-Puig, P. Detecting biomarkers with microdroplet technology. Trends Mol. Med. 18, 405–416 (2012).

    Article  CAS  Google Scholar 

  27. Kang, D.K. et al. Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection. Nat. Commun. 5, 5427 (2014).

    Article  CAS  Google Scholar 

  28. Basova, E.Y. & Foret, F. Droplet microfluidics in (bio) chemical analysis. Analyst 140, 22–38 (2015).

    Article  CAS  Google Scholar 

  29. Clausell-Tormos, J. et al. Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms. Chem. Biol. 15, 427–437 (2008).

    Article  CAS  Google Scholar 

  30. Yeon, J.H. & Park, J.K. Microfluidic cell culture systems for cellular analysis. BioChip J. 1, 17–27 (2007).

    Google Scholar 

  31. Carvalho, M.R., Lima, D., Reis, R.L., Correlo, V.M. & Oliveira, J.M. Evaluating Biomaterial-and Microfluidic-Based 3D Tumor Models. Trends Biotechnol. 33, 667–678 (2015).

    Article  CAS  Google Scholar 

  32. Kim, C. & Kang, J.Y. Microfluidic device for continuous observation of cellular behaviors in specialized core-shell microcapsules. BioChip J. 8, 199–208 (2014).

    Article  CAS  Google Scholar 

  33. Zanoni, M. et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci. Rep. 6, 19103 (2016).

    CAS  Google Scholar 

  34. Zervantonakis, I.K., Kothapalli, C.R., Chung, S., Sudo, R. & Kamm, R.D. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Biomicrofluidics 5, 13406 (2011).

    Article  Google Scholar 

  35. Loessner, D. et al. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 31, 8494–8506 (2010).

    Article  CAS  Google Scholar 

  36. Lin, R.Z. & Chang, H.Y. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol. J. 3, 1172–1184 (2008).

    Article  CAS  Google Scholar 

  37. Hickman, J.A. et al. Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Biotechnol. J. 9, 1115–1128 (2014).

    Article  CAS  Google Scholar 

  38. Mayer, B. et al. Multicellular gastric cancer spheroids recapitulate growth pattern and differentiation phenotype of human gastric carcinomas. Gastroenterology 121, 839–852 (2001).

    Article  CAS  Google Scholar 

  39. Bosnakovski, D. et al. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol. Bioeng. 93, 1152–1163 (2006).

    Article  CAS  Google Scholar 

  40. Wang, W. et al. 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials 30, 2705–2715 (2009).

  41. Shin, Y. et al. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat. Protoc. 7, 1247–1259 (2012).

    Article  CAS  Google Scholar 

  42. Holle, A.W., Young, J.L. & Spatz, J.P. In vitro cancer cell-ECM interactions inform in vivo cancer treatment. Adv. Drug Deliv. Rev. 97, 270–279 (2016).

    Article  CAS  Google Scholar 

  43. Jeon, J.S., Zervantonakis, I.K., Chung, S., Kamm, R.D. & Charest, J.L. In vitro model of tumor cell extravasation. PLoS One 8, e56910 (2013).

    Article  Google Scholar 

  44. Baker, B.M. & Chen, C.S. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).

    Article  CAS  Google Scholar 

  45. Junttila, M.R. & de Sauvage, F.J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).

    Article  CAS  Google Scholar 

  46. Zhang, Q., Liu, T. & Qin, J. A microfluidic-based device for study of transendothelial invasion of tumor aggregates in realtime. Lab Chip 12, 2837–2842 (2012).

    Article  CAS  Google Scholar 

  47. Khademhosseini, A. & Langer, R. Microengineered hydrogels for tissue engineering. Biomaterials 28, 5087–5092 (2007).

    Article  CAS  Google Scholar 

  48. Chung, B.G., Lee, K.H., Khademhosseini, A. & Lee, S.H. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 12, 45–59 (2012).

    Article  CAS  Google Scholar 

  49. Liu, T., Lin, B. & Qin, J. Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device. Lab Chip 10, 1671–1677 (2010).

    Article  CAS  Google Scholar 

  50. Asti, A. & Gioglio, L. Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int. J. Artif. Organs. 37, 187–205 (2014).

    Google Scholar 

  51. Zhu, J. & Marchant, R.E. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devices 8, 607–626 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilnam Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, M., Yang, S. & Kim, P. Microdroplet-based cell culture models and their application. BioChip J 10, 310–317 (2016). https://doi.org/10.1007/s13206-016-0407-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-016-0407-1

Keywords

Navigation