Skip to main content
Log in

Development of simple and rapid HLA-C genotyping method using an oligonucleotide microarray

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Human Leukocyte Antigen (HLA), called human Major Histocompatibility Complex (MHC), performs the crucial function of antigen presentation in human immunity, and correctly matched HLA antigens improves survival and reduces immunological complications. Therefore, a precise HLA typing method is necessary for successful transplantation between donor and recipient. Until now, many methods have been developed for HLA typing, including serological and DNA-based methods. However, these previous methods have been somewhat limited due to their requirements for a large number of samples and complex experimental procedures. To resolve this problem, in this study, we developed rapid genotyping methods for HLA-C using an oligonucleotide microarray. To evaluate the performance of the HLA-C genotyping microarray, we analyzed 50 unrelated Korean individuals. The genotyping results obtained by the oligonucleotide microarray were identical with those of PCR-SBT and PCR-SSPs, at a low-resolution, 2-digit level. Therefore, this microarray method for genotyping HLA constitutes a rapid, simultaneous, and high-throughput method that can be used as an alternative to current methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morishima, Y. et al. Low incidence of acute GVHD in patients transplanted with marrow from HLA-A,B, DR-compatible unrelated donors among Japanese. Bone Marrow Transplant. 15, 235–239 (1995).

    Article  CAS  Google Scholar 

  2. Okumura, H. et al. Graft rejection and hyperacute graft-versus-host disease in stem cell transplantation from non-inherited maternal-antigen-complementary HLA-mismatched siblings. Eur J Haematol. 78, 157–160 (2007).

    Article  CAS  Google Scholar 

  3. Woolfrey, A. et al. HLA-C antigen mismatch is associated with worse outcome in unrelated donor peripheral blood stem cell transplantation. Bone Marrow Transplant. 17, 885–892 (2011).

    Article  CAS  Google Scholar 

  4. Flomenberg, N. et al. Impact of HLA class I and class II high-resolution matching on outcomes of unrelated donor bone marrow transplantation: HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood 104, 1923–1930 (2004).

    Article  CAS  Google Scholar 

  5. Moya-Quiles, M.R. et al. Impact of HLA-C on acute rejection in liver transplantation. Transplant Proc. 35, 1892–1893 (2003).

    Article  CAS  Google Scholar 

  6. Schulman, L.L. et al. Mismatches at the HLA-DR and HLA-B loci are risk factors for acute rejection after lung transplantation. Am J Respir Crit Care Med. 157, 1833–1837 (1998).

    CAS  Google Scholar 

  7. Persijn, G.G. et al. Effect of HLA-A and HLA-B matching on survival of grafts and recipients after renal transplantation. N Engl J Med. 307, 905–908 (1982).

    Article  CAS  Google Scholar 

  8. Sanfilippo, F., Vaughn, W.K., Spees, E.K., Light, J.A. & LeFor, W.M. Benefits of HLA-A and HLA-B matching on graft and patient outcome after cadavericdonor renal transplantation. N Engl J Med. 311, 358–364 (1984).

    Article  CAS  Google Scholar 

  9. Davidson, J.A. et al. HLA-DR15, reduced relapse rate and improved survival after HLA identical sibling hemopoietic stem cell transplantation. Biol Blood Marrow Transplant. 13, 493–494 (2007).

    Article  CAS  Google Scholar 

  10. Rowe, J.M. & Lazarus, H.M. Genetically haploidentical stem cell transplantation for acute leukemia. Bone Marrow Transplant. 27, 669–676 (2001).

    Article  CAS  Google Scholar 

  11. Koeleman, B.P. et al. Genotype effects and epistasis in type 1 diabetes and HLA-DQ trans dimer associations with disease. Genes Immun. 5, 381–388 (2004).

    Article  CAS  Google Scholar 

  12. Jiao, Y.L. et al. Polymorphisms of KIRs gene and HLA-C alleles in patients with ankylosing spondylitis: possible association with susceptibility to the disease. J Clin Immunol. 28, 343–349 (2008).

    Article  CAS  Google Scholar 

  13. Montserrat, V., Galocha, B., Marcilla, M., Vazquez, M. & Lopez de Castro, J.A. HLA-B*2704, an allotype associated with ankylosing spondylitis, is critically dependent on transporter associated with antigen processing and relatively independent of tapasin and immunoproteasome for maturation, surface expression, and T cell recognition: relationship to B*2705 and B*2706. J Immunol. 177, 7015–7023 (2006).

    CAS  Google Scholar 

  14. Alvarez, I. et al. The rheumatoid arthritis-associated allele HLA-DR10 (DRB1*1001) shares part of its repertoire with HLA-DR1 (DRB1*0101) and HLA-DR4 (DRB*0401). Arthritis Rheum. 58, 1630–1639 (2008).

    Article  CAS  Google Scholar 

  15. Koskinen, L. et al. Cost-effective HLA typing with tagging SNPs predicts celiac disease risk haplotypes in the Finnish, Hungarian, and Italian populations. Immunogenetics 61, 247–256 (2009).

    Article  CAS  Google Scholar 

  16. Bunce, M. et al. High resolution HLA-C typing by PCR-SSP: identification of allelic frequencies and linkage disequilibria in 604 unrelated random UK Caucasoids and a comparison with serology. Tissue Antigens 50, 100–111 (1997).

    Article  CAS  Google Scholar 

  17. Levine, J.E. & Yang, S.Y. SSOP typing of the Tenth International Histocompatibility Workshop reference cell lines for HLA-C alleles. Tissue Antigens 44, 174–183 (1994).

    Article  CAS  Google Scholar 

  18. van der Vlies, S.A., Voorter, C.E. & van den Berg-Loonen, E.M. A reliable and efficient high resolution typing method for HLA-C using sequence-based typing. Tissue Antigens 52, 558–568 (1998).

    Article  Google Scholar 

  19. Casamitjana, N. et al. Development of a new HLADRB real-time PCR typing method. Hum Immunol. 66, 85–91 (2005).

    Article  CAS  Google Scholar 

  20. Guo, Z., Gatterman, M.S., Hood, L., Hansen, J.A. & Petersdorf, E.W. Oligonucleotide arrays for high-throughput SNPs detection in the MHC class I genes: HLA-B as a model system. Genome Res. 12, 447–457 (2002).

    CAS  Google Scholar 

  21. Zhang, F. et al. Oligonucleotide microarray for HLADRB1 genotyping: preparation and clinical evaluation. Tissue Antigens. 65, 467–473 (2005).

    Article  CAS  Google Scholar 

  22. Lee, K.R. et al. Development and clinical evaluation of a microarray for HLA-A and -DRB1 genotyping. Tissue Antigens. 72, 568–577 (2008).

    Article  CAS  Google Scholar 

  23. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  24. Davidson, W.F., Kress, M., Khoury, G. & Jay, G. Comparison of HLA class I gene sequences. Derivation of locus-specific oligonucleotide probes specific for HLAA, HLA-B, and HLA-C genes. J Biol Chem. 260, 13414–13423 (1985).

    CAS  Google Scholar 

  25. Robinson, J. et al. The IMGT/HLA database. Nucleic Acids Res. Databas issue 39, D1171–1176 (2011).

    Article  Google Scholar 

  26. Sun, Y., Hegamyer, G. & Colburn, N.H. PCR-direct sequencing of a GC-rich region by inclusion of 10% DMSO: application to mouse c-jun. Biotechniques 15, 372–374 (1993).

    CAS  Google Scholar 

  27. Sarkar, G., Kapelner, S. & Sommer, S.S. Formamide can dramatically improve the specificity of PCR. Nucleic Acids Res. 18, 7465 (1990).

    Article  CAS  Google Scholar 

  28. Lu, Y.H. & Negre, S. Use of glycerol for enhanced efficiency and specificity of PCR amplification. Trends Genet. 9, 297 (1993).

    Article  CAS  Google Scholar 

  29. Henke, W., Herdel, K., Jung, K., Schnorr, D. & Loening, S.A. Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Res. 25, 3957–3958 (1997).

    Article  CAS  Google Scholar 

  30. Lee, K.W., Oh, D.H., Lee, C. & Yang, S.Y. Allelic and haplotypic diversity of HLA-A, -B, -C, -DRB1, and -DQB1 genes in the Korean population. Tissue Antigens 65, 437–447 (2005).

    Article  CAS  Google Scholar 

  31. Chung, H.Y., Yoon, J.A., Han, B.Y., Song, E.Y. & Park, M.H. Allelic and haplotypic diversity of HLAA, -B, -C, and -DRB1 genes in Koreans defined by high-resolution DNA typing. Korean J Lab Med. 30, 685–696.

  32. Lee, I., Dombkowski, A.A. & Athey, B.D. Guidelines for incorporating non-perfectly matched oligonucleotides into target-specific hybridization probes for a DNA microarray. Nucleic Acids Res. 32, 681–690 (2004).

    Article  CAS  Google Scholar 

  33. Shchepinov, M.S., Case-Green, S.C. & Southern, E.M. Steric factors influencing hybridisation of nucleic acids to oligonucleotide arrays. Nucleic Acids Res. 25, 1155–1161 (1997).

    Article  CAS  Google Scholar 

  34. Petersdorf, E.W. et al. Association of HLA-C disparity with graft failure after marrow transplantation from unrelated donors. Blood 89, 1818–1823 (1997).

    CAS  Google Scholar 

  35. Goldberg, A.C. et al. Analysis of HLA haplotypes in autoimmune hepatitis type 1: identifying the major susceptibility locus. Hum Immunol. 62, 165–169 (2001).

    Article  CAS  Google Scholar 

  36. Lim, Y.S. et al. Susceptibility to type 1 autoimmune hepatitis is associated with shared amino acid sequences at positions 70–74 of the HLA-DRB1 molecule. J Hepatol. 48, 133–139 (2008).

    Article  CAS  Google Scholar 

  37. Hirsch, D., Narinski, R., Klein, T., Israel, S. & Singer, J. Immunogenetics of HLA class II in Israeli patients with adult-onset type 1 diabetes mellitus. Hum Immunol. 68, 616–622 (2007).

    Article  CAS  Google Scholar 

  38. Jiang, B. et al. Application of HLA-DRB1 genotyping by oligonucleotide micro-array technology in forensic medicine. Forensic Sci Int. 162, 66–73 (2006).

    Article  CAS  Google Scholar 

  39. Hollenbach, J.A. et al. Report from the killer immunoglobulin-like receptor (KIR) anthropology component of the 15th International Histocompatibility Workshop: worldwide variation in the KIR loci and further evidence for the co-evolution of KIR and HLA. Tissue Antigens 76, 9–17.

  40. Terasaki, P.I. & McClelland, J.D. Microdroplet assay of human serum cytotoxins. Nature 204, 998–1000 (1964).

    Article  CAS  Google Scholar 

  41. Lorentzen, D.F., Iwanaga, K.K., Meuer, K.J., Moritz, T.L. & Watkins, D.I. A 25% error rate in serologic typing of HLA-B homozygotes. Tissue Antigens 50, 359–365 (1997).

    Article  CAS  Google Scholar 

  42. Reynaldo, L.P., Vologodskii, A.V., Neri, B.P. & Lyamichev, V.I. The kinetics of oligonucleotide replacements. J Mol Biol. 297, 511–520 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae Sung Kim or Seung Yong Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, H.K., Chung, I.H., Kim, HJ. et al. Development of simple and rapid HLA-C genotyping method using an oligonucleotide microarray. BioChip J 5, 255–264 (2011). https://doi.org/10.1007/s13206-011-5310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-011-5310-1

Keywords

Navigation