Skip to main content
Log in

Graphene-based electrochemical biosensor for pathogenic virus detection

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

A graphene based biosensor system is presented for performing highly sensitive pathogenic virus detection. A free-standing conductive graphene film was prepared as a novel electrochemical sensor through two steps: synthesis of a graphene oxide (GO) film from GO colloidal suspensions by using a speed vacuum concentrator and thermal annealing process at 900°C with H2/Ar flow to generate a reduced GO film. The resultant graphene film shows an excellent electron transfer property on the surface in the [Fe(CN)6]3−/4− redox system and is used as a working electrode in the electrochemical biosensor. The surface of graphene is modified with pyrene derivatives, and then covalently linked with virus-specific antibodies. The target cell, rotavirus, is captured on the graphene film through antibody-antigen interaction, and the entire process was monitored by cyclic voltammetric responses. A 105 pfu/mL of input cells is detected with ca. 30.7% sensitivity, and ca. 1.3% sensitivity is measured with 103 pfu/mL of input cells, demonstrating that graphene film based electrode can be applied for electrochemical biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui, Y., Wei, Q., Park, H. & Lieber, C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    Article  CAS  Google Scholar 

  2. Wu, G. et al. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 19, 856–860 (2001).

    Article  CAS  Google Scholar 

  3. Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47–52 (2004).

    Article  CAS  Google Scholar 

  4. Zhang, J. & Lakowicz, J.R. A model for DNA detection by metal-enhanced fluorescence from immobilized silver nanoparticles on solid substrate. J. Phys. Chem. B. 110, 2387–2392 (2006).

    Article  CAS  Google Scholar 

  5. Zhang, C., Yeh, H., Kuroki, M.T. & Wang, T. Singlequantum-dot-based DNA nanosensor. Nat. Mater. 4, 826–831 (2005).

    Article  Google Scholar 

  6. Welsher, K., Liu, Z., Daranciang, D. & Dai, H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 8, 586–590 (2008).

    Article  CAS  Google Scholar 

  7. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  8. Kim, S.N., Rusling, J.F. & Papadimitrakopoulos, F. Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv. Mater. 19, 3214–3228 (2007).

    Article  CAS  Google Scholar 

  9. Huang, J., Liu, Y. & You, T. Carbon nanofiber based electrochemical biosensors: A review. Anal. Methods 2, 202–211 (2010).

    Article  Google Scholar 

  10. Koh, J., Kim, B., Hong, S., Lim, H. & Choi, H.C. Nanotube-based chemical and biomolecular sensors. J. Mater. Sci. Technol. 24, 578–589 (2008).

    CAS  Google Scholar 

  11. Geim, A.K. & MacDonald, A.H. Graphene: exploring carbon flatland. Physics Today 60, 35–41 (2007).

    Article  CAS  Google Scholar 

  12. Yang, W. et al. Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49, 2114–2138 (2010).

    Article  CAS  Google Scholar 

  13. Mohanty, N. & Berry, V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8, 4469–4476 (2008).

    Article  CAS  Google Scholar 

  14. Liu, Z., Robinson, J.T., Sun, X. & Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876–10877 (2008).

    Article  CAS  Google Scholar 

  15. Liu, F., Choi, J.Y. & Seo, T.S. Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. Biosen. Bioelectron. 25, 2361–2365 (2010).

    Article  CAS  Google Scholar 

  16. Jung, J.H., Cheon, D.S., Liu, F., Lee, K.B. & Seo, T.S. A graphene oxide based immuno-biosensor for pathogen detection. Angew. Chem. Int. Ed. 49, 5708–5711 (2010).

    Article  CAS  Google Scholar 

  17. Shan, C. et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 81, 2378–2382 (2009).

    Article  CAS  Google Scholar 

  18. Liu, F. & Seo, T.S. A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Adv. Funct. Mater. 20, 1930–1936 (2010).

    Article  CAS  Google Scholar 

  19. Park, S. et al. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20, 6592–6594 (2008).

    Article  CAS  Google Scholar 

  20. Xu, Y., Bai, H., Lu, G., Li, C. & Shi, G. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 130, 5856–5857 (2008).

    Article  CAS  Google Scholar 

  21. Shang, N.G. et al. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 18, 3506–3514 (2008).

    Article  CAS  Google Scholar 

  22. Chen, J.R., Zhang, Y., Wang, D. & Dai, H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838–3839 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Seok Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Choi, K.S., Park, T.J. et al. Graphene-based electrochemical biosensor for pathogenic virus detection. BioChip J 5, 123–128 (2011). https://doi.org/10.1007/s13206-011-5204-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-011-5204-2

Keywords

Navigation