Skip to main content

Advertisement

Log in

IAA-decorated CuO nanocarriers significantly improve Chickpea growth by increasing antioxidative activities

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Plant growth regulators tagged on metallic oxide nanoparticles (NPs) may function as nanofertilizers with reduced toxicity of NPs. CuO NPs were synthesized to function as nanocarriers of Indole-3-acetic acid (IAA). Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed 30.4 nm size of NPs and sheet-like structure, respectively, of CuO-IAA NPs. Fourier-transform infrared spectroscopy (FTIR) confirmed CuO-IAA formation. IAA-decorated CuO NPs enhanced the physiological parameters of Chickpea plants, i.e., root length, shoot length, and biomass compared to naked CuO NPs. The variation in physiological response was due to change of phytochemical contents in plants. Phenolic content increased up to 17.98 and 18.13 µgGAE/mg DW at 20 and 40 mg/L of CuO-IAA NPs, respectively. However, significant decrease in antioxidant enzymes’ activity was recorded compared to control. Presence of CuO-IAA NPs increased the reducing potential of plants at higher concentration of NPs, while decrease in total antioxidant response was observed. This study concludes that IAA conjugation to CuO NPs reduces toxicity of NPs. Furthermore, NPs can be explored as nanocarriers for plant modulators and slow release in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  • Ahmad MA, Javed R, Adeel M, Rizwan M, Ao Q, Yang Y (2020) Engineered ZnO and CuO nanoparticles ameliorate morphological and biochemical response in tissue culture regenerants of Candyleaf (Stevia rebaudiana). Molecules 25:1356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ain NU, Haq IU, Abbasi BH, Javed R, Zia M (2018) Influence of PVP/PEG impregnated CuO NPs on physiological and biochemical characteristics of Trigonella foenum-graecum L. IET Nanobiotechnol 12:349–356

    PubMed Central  Google Scholar 

  • Almajano MP, Carbo R, Jiménez JAL, Gordon MH (2008) Antioxidant and antimicrobial activities of tea infusions. Food Chem 108:55–63

    CAS  Google Scholar 

  • Asghar M, Sajjad A, Hanif S, Ali JS, Ali Z, Zia M (2022) Comparative analysis of synthesis, characterization, antimicrobial, antioxidant, and enzyme inhibition potential of rose petal based synthesized copper oxide nanoparticles. Mater Chem Phys 278:125724

    CAS  Google Scholar 

  • Ashfaq M, Verma N, Khan S (2017) Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environ Sci Nano 4:138–148

    CAS  Google Scholar 

  • Astill C, Birch MR, Dacombe C, Humphrey PG, Martin PT (2001) Factors affecting the caffeine and polyphenol contents of black and green tea infusions. J Agric Food Chem 49:5340–5347

    CAS  PubMed  Google Scholar 

  • Bashri G, Prasad SM (2015) Indole acetic acid modulates changes in growth, chlorophyll a fluorescence and antioxidant potential of Trigonella foenum-graecum L. grown under cadmium stress. Acta Physiol Plant 37:49

    Google Scholar 

  • Bashri G, Prasad SM (2016) Exogenous IAA differentially affects growth, oxidative stress and antioxidants system in Cd stressed Trigonella foenum-graecum L. seedlings: toxicity alleviation by up-regulation of ascorbate-glutathione cycle. Ecotoxicol Environ Saf 132:329–338

    CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    CAS  PubMed  Google Scholar 

  • Beffa R, Martin HV, Pilet PE (1990) In vitro oxidation of indole acetic acid by soluble auxin-oxidases and peroxidases from maize roots. Plant Physiol 94:485–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95:605–612

    CAS  Google Scholar 

  • Chang Y-N, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5:2850–2871

    CAS  PubMed Central  Google Scholar 

  • Clarke G, Ting KN, Wiart C, Fry J (2013) High correlation of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants 2:1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa MVJD, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119

    Google Scholar 

  • Cuong HN, Pansambal S, Ghotekar S, Oza R, Thanh Hai NT, Viet NM, Nguyen VH (2022) New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: a review. Environ Res 203:111858

    CAS  PubMed  Google Scholar 

  • Das S, Wolfson BP, Tetard L, Tharkur J, Bazata J, Santra S (2015) Effect of N-acetyl cysteine coated CdS: Mn/ZnS quantum dots on seed germination and seedling growth of snow pea (Pisum sativum L.): Imaging and spectroscopic studies. Environ Sci Nano 2:203–212

    CAS  Google Scholar 

  • De Klerk GJ, Guan H, Huisman P, Marinova S (2011) Effects of phenolic compounds on adventitious root formation and oxidative decarboxylation of applied indoleacetic acid in Malus ‘Jork 9.’ Plant Growth Regul 63:175–185

    CAS  Google Scholar 

  • Deng F, Wang S, Xin H (2016) Toxicity of CuO nanoparticles to structure and metabolic activity of Allium cepa root tips. J Bull Environ Contam Toxicol 97:702–708

    CAS  Google Scholar 

  • Dhiman N, Ghosh S, Mishra YK, Tripathi KM (2022) Prospects of nano-carbons as emerging catalysts for enzyme-mimetic applications. Mater Adv 3:3101–3122

    CAS  Google Scholar 

  • Dulta K, Koşarsoy Ağçeli G, Chauhan P, Jasrotia R, Chauhan PK, Ighalo JO (2022) Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustain Environ Res 32(1):1–15

    Google Scholar 

  • Elango G, Kumaran SM, Kumar SS, Muthuraja S, Roopan SM (2015) Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochim Acta A Mol Biomol Spectrosc 145:176–180

    CAS  PubMed  Google Scholar 

  • Faizan M, Rajput VD, Al-Khuraif AA, Arshad M, Minkina T, Sushkova S, Yu F (2021) Effect of foliar fertigation of chitosan nanoparticles on cadmium accumulation and toxicity in Solanum lycopersicum. Biology 10:666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu S-F, Wei J-Y, Chen H-W, Liu Y-Y, Lu H-Y, Chou J-Y (2015) Indole-3-acetic acid: a widespread physiological code in interactions of fungi with other organisms. Plant Signal Behav 10(8):e1048052

    PubMed  PubMed Central  Google Scholar 

  • Ganesan K, Jothi VK, Natarajan A, Rajaram A, Ravichandran S, Ramalingam S (2020) Green synthesis of copper oxide nanoparticles decorated with graphene oxide for anticancer activity and catalytic applications. Arab J Chem 13:6802–6814

    CAS  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2012) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752

    Google Scholar 

  • Grossmann K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci Formerly Pestic Sci 66:113–120

    CAS  Google Scholar 

  • Hasan M, Rafique S, Zafar A, Loomba S, Khan R, Hassan SG, Mahmood N (2020) Physiological and anti-oxidative response of biologically and chemically synthesized iron oxide: Zea mays a case study. Heliyon 6:e04595

    PubMed  PubMed Central  Google Scholar 

  • Helmy M, Awad M, Mosa KA (2016) Limited resources of genome sequencing in developing countries: challenges and solutions. Appl Trans Genom 9:15–19

    Google Scholar 

  • Huang H, Ullah F, Zhou D-X, Yi M, Zhao Y (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00800

    Article  PubMed  PubMed Central  Google Scholar 

  • Husen A, Siddiqui KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16

    Google Scholar 

  • Ismail A, Takeda S, Nick P (2014) Life and death under salt stress: same players, different timing. J Exp Bot 65:2963–2979

    CAS  PubMed  Google Scholar 

  • Javed R, Ahmed M, Haq IU, Nisa S, Zia M (2017a) PVP and PEG doped CuO nanoparticles are more biologically active: antibacterial, antioxidant, antidiabetic and cytotoxic perspective. Mater Sci Eng C 79:108–115

    CAS  Google Scholar 

  • Javed R, Mohamed A, Yücesan B, Gürel E, Kausar R, Zia M (2017b) CuO nanoparticles significantly influence in vitro culture, steviol glycosides, and antioxidant activities of Stevia rebaudiana Bertoni. Plant Cell Tiss Org Cult 131:611–620

    CAS  Google Scholar 

  • Javed R, Usman M, Yücesan B, Zia M, Gürel E (2017c) Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol Biochem 110:94–99

    CAS  PubMed  Google Scholar 

  • Javed R, Zia M, Yücesan B, Gürel E (2017d) Abiotic stress of ZnO-PEG, ZnO-PVP, CuO-PEG and CuO-PVP nanoparticles enhance growth, sweetener compounds and antioxidant activities in shoots of Stevia rebaudiana Bertoni. IET Nanobiotechnol 11:898–902

    PubMed Central  Google Scholar 

  • Javed R, Zia M, Naz S, Aisida SO, Ain NU, Ao Q (2020) Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnol 18:172

    Google Scholar 

  • Javed R, Rais F, Kaleem M, Jamil B, Ahmad MA, Yu T, Qureshi SW, Ao Q (2021) Chitosan capping of CuO nanoparticles: facile chemical preparation, biological analysis, and applications in dentistry. Int J Biol Macromol 167:1452–1467

    CAS  PubMed  Google Scholar 

  • Javed R, Yucesan B, Zia M, Gurel E (2022) Nanoelicitation: a promising and emerging technology for triggering the sustainable in vitro production of secondary metabolites in medicinal plants. Plant and Nanoparticles. Springer, Singapore

    Google Scholar 

  • Javed R, Bilal M, Ali JS, Khan S, Cheema M (2023) Nanotechnology: a tool for the development of sustainable agroindustry. In: Fernandez-Luqueno F, Patra JK (eds) Agricultural and environmental nanotechnology. Interdisciplinary biotechnological advances. Springer, Singapore

  • Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano-and micrometer size. J Toxicol Lett 188:112–118

    CAS  Google Scholar 

  • Kumar V, Shriram V, Hoque TS, Hasan MM, Burritt DJ, Hossain MA (2017) Glycinebetaine-mediated abiotic oxidative-stress tolerance in plants: physiological and biochemical mechanisms. Stress Signaling in Plants: Genomics and Proteomics Perspective, vol 2. Springer, Cham, pp 111–133

    Google Scholar 

  • Loach K (1987) Hormone applications and adventitious root formation in cuttings-a critical review. J Int Symp Veg Propag Woody Species. 227:126–133

    Google Scholar 

  • Lu Q, Wang X, Hu X, Cebe P, Omenetto F, Kaplan DL (2010) Stabilization and release of enzymes from silk films. J Macromol Biosci 10:359–368

    CAS  Google Scholar 

  • Ma C, White JC, Dhankher OP, Xing B (2015) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49:7109–7122

    CAS  PubMed  Google Scholar 

  • Madhumitha G, Elango G, Roopan SM (2016) Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications. Appl Microbiol Biotechnol 100:571–581

    CAS  PubMed  Google Scholar 

  • McSteen P (2010) Auxin and monocot development. Cold Spring Harb Perspect Biol 2:a001479

    PubMed  PubMed Central  Google Scholar 

  • Mohammadi R, Maali-Amiri R, Abbasi A (2013) Effect of TiO2 on Chickpea response to cold stress. Biolog Trace Elem Res 152:403–410

    CAS  Google Scholar 

  • Nagore P, Ghotekar S, Mane K, Ghoti A, Bilal M, Roy A (2021) Structural properties and antimicrobial activities of Polyalthia longifolia leaf extract-mediated CuO nanoparticles. BioNanoSci. https://doi.org/10.1007/s12668-021-00851-4

    Article  Google Scholar 

  • Nair PMG, Chung IM (2014) A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. J Biol Trace Elem Res 162:342–352

    CAS  Google Scholar 

  • Naskar A, Goswami M, Ganguly A, Ghosh R (2020) Effects of iron oxide nanoparticles on chickpea (Cicer arietinum): physiological profiling, chlorophylls assay and antioxidant potential. Int Res J Eng Technol. 7(2):2395–2456

    Google Scholar 

  • Naz S, Gul A, Zia M (2020) Toxicity of copper oxide nanoparticles: a review study. IET Nanobiotechnol 14:1–13

    PubMed  Google Scholar 

  • Nazir S, Jan H, Zaman G, Khan T, Ashraf H, Meer B, Abbasi BH (2021) Copper oxide (CuO) and manganese oxide (MnO) nanoparticles induced biomass accumulation, antioxidants biosynthesis and abiotic elicitation of bioactive compounds in callus cultures of Ocimum basilicum (Thai basil). Artif Cells Nanomed Biotechnol 49:626–634

    PubMed  Google Scholar 

  • Ochoa L, Medina-Velo IA, Barrios AC, Bonilla-Bird NJ, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresday JL (2017) Modulation of CuO nanoparticles toxicity to green pea (Pisum sativum Fabaceae) by the phytohormone indole-3-acetic acid. Sci Total Environ 598:513–524

    CAS  PubMed  Google Scholar 

  • Park M, Sharma A, Kang C, Han J, Tripathi KM, Lee H-J (2022) N-doped carbon nanorods from biomass as a potential antidiabetic nanomedicine. ACS Biomater Sci Eng 8:2131–2141

    CAS  PubMed  Google Scholar 

  • Petrova A, Plaksenkova I, Kokina I, Jermalonoka M (2021) Effect of Fe3O4 and CuO nanoparticles on morphology, genotoxicity, and mRNA expression on different barley (Hordeum vulgare L.) genotypes. Sci World J 2021:1–11

    Google Scholar 

  • Praba KL, Jayashree M, Banu KS, Gino A, Kurian A (2015) Green and chemically synthesized copper oxide nanoparticles-a preliminary research towards its toxic behaviour. Int J Pharm Pharm Sci 7:156–160

    CAS  Google Scholar 

  • Printz B, Lutts S, Hausman J-F, Sergeant K (2016) Copper trafficking in plants and its implication on cell wall dynamics. Fron Plant Sci. https://doi.org/10.3389/fpls.2016.00601

    Article  Google Scholar 

  • Saeed F, Younas M, Fazal H, Mushtaq S, Rahman FU, Shah M, Abbasi BH (2021) Green and chemically synthesized zinc oxide nanoparticles: effects on in-vitro seedlings and callus cultures of Silybum marianum and evaluation of their antimicrobial and anticancer potential. Artif Cells Nanomed Biotechnol 49:450–460

    CAS  PubMed  Google Scholar 

  • Shetti NP, Nandibewoor ST (2009) Kinetic and mechanistic investigations on oxidation of L-tryptophan by diperiodatocuprate (III) in aqueous alkaline medium. Z Phys Chem 223:299–317

    CAS  Google Scholar 

  • Szmigiel-Bakalarz K, Skoczyńska A, Lewańska M, Guenther D, Oeckler O, Malik-Gajewska M, Morzyk-Ociepa B (2020) New Zn (II) coordination polymer of indole-3-acetic acid, a plant-growth promoting hormone: crystal structure, spectroscopic characterization, DFT calculations and microbiological activity. Polyhedron 185:114582

    CAS  Google Scholar 

  • Thangavelu RM, Gunasekaran D, Jesse MI, Su MR, Sundarajan D, Krishnan K (2018) Nanobiotechnology approach using plant rooting hormone synthesized silver nanoparticle as “nanobullets” for the dynamic applications in horticulture–an in vitro and ex vitro study. Arab J Chem 11:48–61

    CAS  Google Scholar 

  • Veisi H, Karmakar B, Tamoradi T, Hemmati S, Hekmati M, Hamelian M (2021) Biosynthesis of CuO nanoparticles using aqueous extract of herbal tea (Stachys Lavandulifolia) flowers and evaluation of its catalytic activity. Sci Rep 11:1–13

    Google Scholar 

  • Vetter JL, Steinberg MP, Nelson AI (1958) Enzyme assay, quantitative determination of peroxidase in sweet corn. J Agric Food Chem 6:39–41

    CAS  Google Scholar 

  • Vijayalakshmi M, Ruckmani K (2016) Ferric reducing anti-oxidant power assay in plant extract. Bangladesh J Pharmacol 11:570–572

    Google Scholar 

  • Wahab R, Khan ST, Dwivedi S, Ahamed M, Musarrat J, Al-Khedhairy AA (2013) Effective inhibition of bacterial respiration and growth by CuO microspheres composed of thin nanosheets. Colloids Surf, B 111:211–217

    CAS  Google Scholar 

  • Wang Y, Lin Y, Xu Y, Yin Y, Guo H, Du W (2019) Divergence in response of lettuce (var. ramosa Hort.) to copper oxide nanoparticles/microparticles as potential agricultural fertilizer. Environ Pollut Bioavail 31:80–84

    CAS  Google Scholar 

  • Wu SG, Huang L, Head J, Chen DR, Kong IC, Tang YJ (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotech 3:126

    CAS  Google Scholar 

  • Zaeem A, Drouet S, Anjum S, Khurshid R, Younas M, Blondeau JP, Abbasi BH (2020) Effects of biogenic zinc oxide nanoparticles on growth and oxidative stress response in flax seedlings vs in vitro cultures: a comparative analysis. Biomolecules 10:918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zafar H, Ali A, Zia M (2017) CuO nanoparticles inhibited root growth from Brassica nigra seedlings but induced root from stem and leaf explants. Appl Biochem Biotechnol 181:365–378

    CAS  PubMed  Google Scholar 

  • Zafar H, Aziz T, Khan B, Mannan A, Rehman RU, Zia M (2020) CuO and ZnO nanoparticle application in synthetic soil modulates morphology, nutritional contents, and metal analysis of Brassica nigra. ACS Omega 5:13566–13577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zahir A, Nadeem M, Ahmad W, Giglioli-Guivarc’h N, Hano C, Abbasi BH (2019) Chemogenic silver nanoparticles enhance lignans and neolignans in cell suspension cultures of Linum usitatissimum L. Plant Cell Tiss Org Cult 136:589–596

    CAS  Google Scholar 

  • Zaka M, Abbasi BH (2017) Effects of bimetallic nanoparticles on seed germination frequency and biochemical characterisation of Eruca sativa. IET Nanobiotechnol 11:255–260

    PubMed  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Ann Rev Plant Biol 61:49–64

    CAS  Google Scholar 

  • Zia M, Zafar H, Gul FZ, Abbasi BH, Rizvi ZF, Mannan A (2021) Synergistic influence of CuO nanoparticles and spectral lights transforms biomass, antioxidative response, and antioxidants in Brassica nigra. Plant Cell Tiss Org Cult 145(2):261–274

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan for providing all research facilities.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SH: writing—original draft, formal analysis, data curation, validation RJ: investigation, validation, writing—original draft, writing—review and editing, visualization AK: writing—original draft, data curation AS: writing—original draft MZ: conceptualization, methodology, resources, supervision, project administration.

Corresponding authors

Correspondence to Rabia Javed or Muhammad Zia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human participants and/or animals

Our research don’t involve humans or animals.

Informed consent

Not Applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanif, S., Javed, R., Khan, A. et al. IAA-decorated CuO nanocarriers significantly improve Chickpea growth by increasing antioxidative activities. 3 Biotech 13, 104 (2023). https://doi.org/10.1007/s13205-023-03516-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03516-z

Keywords

Navigation