Skip to main content
Log in

Phytochemical characterization and evaluation of antioxidant, antimicrobial, antibiofilm and anticancer activities of ethyl acetate seed extract of Hydnocarpus laurifolia (Dennst) Sleummer

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Various functional groups were observed in the FTIR analysis of Hydnocarpus laurifolia seeds ethyl acetate extract such as O–H, N–H, C–H, –CH2, O=C=O, C=O, C=O–NH, and CH3, etc. Eleven bioactive compounds were detected via GC–MS and the predominant compounds include (1S)-2-cyclopentene-1-tridecanoicacid (chaulmoogric acid) (80.59%); 2-cyclopentene-1-undecanoic acid (hydnocarpic acid) (6.76%); cyclobutylamine (5.28%); methyl thioacetate (ethanethioic acid) (4.84%); lignoceric acid (2.21%). The TPC and TFC values were 0.110 ± 0.04 GAE g−1 and 0.175 ± 0.05 g CE g−1 respectively. Ethyl acetate extract showed strong DDPH free radical scavenging activity with IC50 value 10.64 ± 0.48 µg ml−1 and antioxidant activity index 3.759. The ethyl acetate extract also exhibited potential ABTS radical scavenging efficacy with a very low IC50 value, i.e., 07.81 ± 0.48 µg ml−1. P. aeruginosa was the most sensitive bacteria to the extract with 33.16 ± 0.88 mm inhibition zone and MIC: 3.12 mg ml−1, MBC: 6.25 mg ml−1. P. aeruginosa biofilm was inhibited by ethyl acetate extract 99.22% at MIC concentration. The LM images displayed a decrease in the number of biofilm cells and FE-SEM micrographs showcased the extensive decrease as well as disintegration in biofilm. Additionally, ethyl acetate extract was found selectively cytotoxic to the K562 cancer cells having an IC50 of 25.41 μg ml−1 and barely cytotoxic to normal PBMCs having an IC50 of 482.54 μg ml−1, and the selectivity index value was 18.99. Data validate scientifically the traditional use of H. laurifolia seeds in folk medicines and confirmed that it can be used in modern phytomedicines as an antioxidant, antimicrobial, antibiofilm, and anticancer agent and is toxicologically safe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmad I, Mehmood Z, Mohammad F (1998) Screening of some Indian medicinal plants for their antimicrobial properties. J Ethnopharmacol 62(2):183–193

    Article  CAS  PubMed  Google Scholar 

  • Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N (2019) A comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolites 9(258):1–13. https://doi.org/10.3390/metabo9110258

    Article  CAS  Google Scholar 

  • Arulmozhi P, Vijayakumar S, Kumar T (2018) Phytochemical analysis and antimicrobial activity of some medicinal plants against selected pathogenic microorganisms. Microb Pathog 123:219–226

    Article  CAS  PubMed  Google Scholar 

  • Bhat MY, Gul MZ, Lohamror LR, Qureshi IA, Ghazi IA (2018) An in vitro study of the antioxidant and antiproliferative properties of Artemisia absinthium- a potent medicinal plant. Free Radic Antioxid 8:18–25. https://doi.org/10.5530/fra.2018.1.4

    Article  CAS  Google Scholar 

  • Branquinho LS, Santos JA, Cardoso CAL, Mota J, da S, Junior UL, Kassuya, CAL, Arena AC, (2017) Anti-inflammatory and toxicological evaluation of essential oil from Piper glabratum leaves. J Ethnopharmacol 198:372–378. https://doi.org/10.1016/j.jep.2017.01.008

    Article  CAS  PubMed  Google Scholar 

  • Chaovanalikit A, Wrolstad RE (2004) Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. J Food Sci 69(1):FCT67–FCT72

    Article  CAS  Google Scholar 

  • Damle P, McClatchy JK, Gangadharam PRJ, Davidson PT (1978) Anti mycobacterial activity of some potential chemotherapeutic compounds. Tubercle 59(2):135–138

    Article  CAS  PubMed  Google Scholar 

  • de Veras BO, de Oliveira MBM, da Silva Oliveira FG, Dos Santos YQ, de Oliveira JRS, de Menezes LVL, de Souza Lopes AC (2020) Chemical composition and evaluation of the antinociceptive, antioxidant and antimicrobial effects of essential oil from Hymenaea cangaceira (pinto, mansano and azevedo) native to Brazil: a natural medicine. J Ethnopharmacol 247(112265):1–9. https://doi.org/10.1016/j.jep.2019.112265

    Article  CAS  Google Scholar 

  • Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50(10):3010–3014

    Article  CAS  PubMed  Google Scholar 

  • Dutra RC, Pittella F, Dittz D, Marcon R, Pimenta DS, Lopes MT, Raposo NR (2012) Chemical composition and cytotoxicity activity of the essential oil of Pterodon emarginatus. Rev Bras Farmacogn 22(5):971–978

    Article  CAS  Google Scholar 

  • Easmin S, Sarker MZI, Ghafoor K, Ferdosh S, Jaffri J, Ali ME, Khatib A (2017) Rapid investigation of a-glucosidase inhibitory activity of Phaleria macrocarpa extracts using FTIR-ATR based fingerprinting. J Food Drug Anal 25(2):306–315. https://doi.org/10.1016/j.jfda.2016.09.007

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick MC, Bauch CT, Townsend JP, Galvani AP (2019) Modelling microbial infection to address global health challenges. Nat Microbiol 4(10):1612–1619. https://doi.org/10.1038/s41564-019-0565-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong SY, Piva T, Dekiwadia C, Urban S, Huynh T (2016) Comparison of cytotoxicity between extracts of Clinacanthus nutans (Burm f) Lindau leaves from different locations and the induction of apoptosis by the crude methanol leaf extract in D24 human melanoma cells. BMC Complement Altern Med 16(368):1–12

    Google Scholar 

  • Gill AO, Holley RA (2006) Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int J Food Microbiol 108:1–9

    Article  CAS  PubMed  Google Scholar 

  • González-Palma I, Escalona-Buendía HB, Ponce-Alquicira E, Téllez-Téllez M, Gupta VK, Díaz-Godínez G, Soriano-Santos J (2016) Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Front Microbiol 7(1099):1–9

    Google Scholar 

  • Gupta S, Bisnoi JP, Singh DD, Singh R (2019) Effect of different drying technique on the bioactive components of Terminalia arjuna bark. Res J Pharm Technol 12(5):2372–2378

    Article  Google Scholar 

  • Hudzicki J (2009) Kirby-Bauer disk diffusion susceptibility test protocol. Am Soc Microbiol 15:55–63

    Google Scholar 

  • Ilavarasan R, Malika M, Venkataraman S (2005) Anti-inflammatory and antioxidant activities of Cassia fistula Linn bark extracts. Afr J Tradit Complement Altern Med 2:70–85

    Google Scholar 

  • Jadav HR, Ruknuddin G, Harisha CR, Kumar PP (2016) Preliminary pharmacognostical profile of Tuvaraka (Hydnocarpus laurifolia (Dennst) Sleummer.) seeds. Med JDY Patil Univ 9(2):219–223

    Article  Google Scholar 

  • Kalishwaralal K, Barathmanikanth S, Pandian SRK, Deepak V, Gurunathan S (2010) Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B: Biointerfaces 79:340–344

    Article  CAS  PubMed  Google Scholar 

  • Kekuda P, Kenie D, Chetan D, Raghavendra H (2017) Phytochemical analysis, antimicrobial, the insecticidal and antiradical activity of Hydnocarpus pentandra (Buch-Ham.) Oken. Int J Phytomed 9:576–583

    Article  Google Scholar 

  • Kim BR, Kim HM, Jin CH, Kang SY, Kim JB, Jeon YG, Han AR (2020) Composition and antioxidant activities of volatile organic compounds in radiation-bred Coreopsis cultivars. Plants 9(717):1–9

    Google Scholar 

  • Kumar G, Gupta R, Sharan S, Roy P, Pandey DM (2019) Anticancer activity of plant leaves extract collected from a tribal region of India. 3 Biotech 9(11):1–16

    Article  Google Scholar 

  • Landini P, Antoniani D, Burgess JG, Nijland R (2010) Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol 86:813–823

    Article  CAS  PubMed  Google Scholar 

  • Latha LY, Darah I, Kassim MJNM, Sasidharan S (2010) Antibacterial activity and morphological changes of Pseudomonas aeruginosa cells after exposure to Vernonia cinerea extract. Ultrastruct Pathol 34:219–225

    Article  PubMed  Google Scholar 

  • Levy L (1975) The activity of chaulmoogra acids against Mycobacterium leprae. Am Rev Respir Dis 111(5):703–705

    CAS  PubMed  Google Scholar 

  • López-Salazar H, Camacho-Díaz BH, Ávila-Reyes SV, Pérez-García MD, González-Cortazar M, Arenas Ocampo ML, Jiménez-Aparicio AR (2019) Identification and quantification of β-sitosterol β-d-glucoside of an ethanolic extract obtained by microwave-assisted extraction from Agave angustifolia Haw. Molecules 24(3926):1–13. https://doi.org/10.3390/molecules24213926

    Article  CAS  Google Scholar 

  • Lourenço SC, Moldão-Martins M, Alves VD (2019) Antioxidants of natural plant origins: from sources to food industry applications. Molecules 24(4132):1–25

    Google Scholar 

  • Malaikozhundan B, Vaseeharan B, Vijayakumar S, Pandiselvi K, Kalanjiam MAR, Murugan K, Benelli G (2017) Biological therapeutics of Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells. Microb Pathog 104:268–277

    Article  CAS  PubMed  Google Scholar 

  • Marino DJ (2005) Ethyl acetate. In: Wexler P (ed) Encyclopedia of toxicology. Elsevier, Amsterdam, pp 277–279. https://doi.org/10.1016/B0-12-369400-0/00390-2

    Chapter  Google Scholar 

  • McLachlan A, Kekre N, McNulty J, Pandey S (2005) Pancratistatin: a natural anti-cancer compound that targets mitochondria specifically in cancer cells to induce apoptosis. Apoptosis 10(3):619–630

    Article  CAS  PubMed  Google Scholar 

  • Mishra R, Panda AK, De Mandal S, Shakeel M, Bisht SS, Khan J (2020) Natural anti-biofilm agents: strategies to control biofilm-forming pathogens. Front Microbiol 11(566325):1–23

    Google Scholar 

  • Nene YL, Thapliyal PN (1993) Fungicides in plant disease control. International Science Publisher, New York

    Google Scholar 

  • Nithyanand P, Shafreen RMB, Muthamil S, Pandian SK (2015) Usnic acid inhibits biofilm formation and virulent morphological traits of Candida albicans. Microbiol Res 179:20–28

    Article  CAS  PubMed  Google Scholar 

  • Ogbole OO, Segun PA, Adeniji AJ (2017) In vitro cytotoxic activity of medicinal plants from Nigeria ethnomedicine on Rhabdomyosarcoma cancer cell line and HPLC analysis of active extracts. BMC Complement Altern Med 17(1):1–10

    Article  Google Scholar 

  • Rajput M, Bithel N, Vijayakumar S (2021) Antimicrobial, antibiofilm, antioxidant, anticancer, and phytochemical composition of the seed extract of Pongamia pinnata. Arch Microbiol 203:4005–4024. https://doi.org/10.1007/s00203-021-02365-9

    Article  CAS  PubMed  Google Scholar 

  • Rajput M, Kumar N (2020a) In vitro antimicrobial and antibiofilm efficacy of medicinal plant extracts against clinical MDR isolates from scalp infection cases. Int J Sci Technol Res 9(2):4218–4228

    Google Scholar 

  • Rajput M, Kumar N (2020b) Medicinal plants: a potential source of novel bioactive compounds showing antimicrobial efficacy against pathogens infecting hair and scalp. Gene Rep 21(100879):1–17. https://doi.org/10.1016/j.genrep.2020.100879

    Article  CAS  Google Scholar 

  • Rajput M, Akash N (2020) Ethnobotanical, phytochemical, and pharmacological aspects of Hemidesmus indicus: a herbal bliss for mankind. In: Akash N, Bhandari BS (eds) Ethnomedicinal plant use and practice in traditional medicine. IGI Global, Pennsylvania, pp 154–180

    Chapter  Google Scholar 

  • Rashid S, Rather MA, Shah WA, Bhat BA (2013) Chemical composition, antimicrobial, cytotoxic and antioxidant activities of the essential oil of Artemisia indica Willd. Food Chem 138(1):693–700. https://doi.org/10.1016/j.foodchem.2012.10.102

    Article  CAS  PubMed  Google Scholar 

  • Reddy JK, Rao BS, Reddy TS, Priyanka B (2013) Anti-diabetic activity of ethanolic extract of Hydnocarpus wightiana Blume using STZ induced diabetes in SD rats. IOSR J Pharm 3(1):29–40

    Google Scholar 

  • Reddy SV, Tiwari AK, Kumar US, Rao RJ, Rao JM (2005) Free radical scavenging, enzyme inhibitory constituents from antidiabetic ayurvedic medicinal plant Hydnocarpus wightiana Blume. Phytother Res 19(4):277–281

    Article  CAS  PubMed  Google Scholar 

  • Sagwan S, Rao DV, Sharma RA (2012) In vivo and in vitro proportional antimicrobial activity in karanj (Pongamia pinnata): an imperative leguminous tree. Int J Res Rev App Sci 2(6):981–995

    Google Scholar 

  • Samuel S, Senthilkumar PK, Muthukkaruppan SM (2010) Screening of antimicrobial activity of Indian medicinal plants. J Exp Sci 1(6):25–31

    Google Scholar 

  • Scherer R, Godoy HT (2009) Antioxidant activity index (AAI) by the 2, 2-diphenyl-1-picrylhydrazyl method. Food Chem 112(3):654–658

    Article  CAS  Google Scholar 

  • Sharma K, Sharma S, Kumar N, Singh R, Chauhan N (2021) Profiling of polyphenolic compounds of Ficus palmata fruits via Ultra highperformance liquid chromatography with diode array detector spectrometry. Med Plants Int J Phytomed Relat Ind 13(3):524–528

    Article  Google Scholar 

  • Sheh-Hong L, Darah I (2013) Assessment of anticandidal activity and cytotoxicity of root extract from Curculigo latifolia on pathogenic Candida albicans. J Med Sci 13(3):193–200

    Article  Google Scholar 

  • Shyam KM, Dhanalakshmi P, Yamini SG, Gopalakrishnan S, Manimaran A, Sindhu S, Sagadevan E, Arumugam P (2013) Evaluation of phytochemical constituents and antioxidant activity of Indian medicinal plant Hydnocarpus pentandra. Int J Pharm Pharm Sci 5(2):453–458

    Google Scholar 

  • Singh R, Navneet A (2021) Green synthesis of silver nanoparticles using methanol extract of Ipomoea carnea Jacq. to combat multidrug resistance bacterial pathogens. Curr Res Green Sustain Chem. https://doi.org/10.1016/j.crgsc.2021.100152

    Article  Google Scholar 

  • Sini H, Mohanan PV, Devi KS (2005a) Studies on the insecticidal activity, cytogenecity and metabolism of fatty acid rich fraction of Hydnocarpus laurifolia. Toxicol Environ Chem 87(1):91–98. https://doi.org/10.1080/02772240400007062

    Article  CAS  Google Scholar 

  • Subramenium GA, Viszwapriya D, Iyer PM, Balamurugan K, Pandian SK (2015) covR mediated antibiofilm activity of 3-furancarboxaldehyde increases the virulence of group A Streptococcus. PLoS ONE 10(5):1–19, e0127210. https://doi.org/10.1371/journal.pone.0127210

    Article  CAS  Google Scholar 

  • Tonisi S, Okaiyeto K, Hoppe H, Mabinya LV, Nwodo U, Okoh AI (2020) Chemical constituents, antioxidant and cytotoxicity properties of Leonotis leonurus used in the folklore management of neurological disorders in the Eastern Cape South Africa. 3 Biotech 10(3):1–14

    Article  Google Scholar 

  • Wang Q, Xie M (2010) Antibacterial activity and mechanism of luteolin on Staphylococcus aureus. Acta Microbiol Sin 50(9):1180–1184

    CAS  Google Scholar 

  • Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175

    Article  CAS  PubMed  Google Scholar 

  • Yuvaraja KR, Santhiagu A, Jasemin S, Gopalasatheeskumar K (2020) Antioxidant potential of medicinally important plants Ehretia microphylla, Dipteracanthus patulus and Hydnocarpus laurifolia. Int J Biol Pharm All Sci 9(2):195–205

    CAS  Google Scholar 

  • Yuvaraja KR, Santhiagu A, Jasemine S (2018) Antioxidant and hepatoprotective potential of Hydnocarpus laurifolia: an in vitro and in vivo evaluation. J Pharma BioSci 6(3):43–49

    CAS  Google Scholar 

  • Zhou W, He Y, Lei X, Liao L, Fu T, Yuan Y, Li J (2020) Chemical composition and evaluation of antioxidant activities, antimicrobial, and anti-melanogenesis effect of the essential oils extracted from Dalbergia pinnata (Lour.) Prain. J Ethnopharmacol 254:1–8. https://doi.org/10.1016/j.jep.2020.112731

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the research fund CSIR-UGC JRF (360430) provided by University Grants Commission (UGC), New Delhi, India. The authors sincerely appreciate the “Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India” for providing facilities to enable this research work to be carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minakshi Rajput.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, M., Bithel, N. Phytochemical characterization and evaluation of antioxidant, antimicrobial, antibiofilm and anticancer activities of ethyl acetate seed extract of Hydnocarpus laurifolia (Dennst) Sleummer. 3 Biotech 12, 215 (2022). https://doi.org/10.1007/s13205-022-03267-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-022-03267-3

Keywords

Navigation