Skip to main content

Advertisement

Log in

Whole genome analysis of Gluconacetobacter azotocaptans DS1 and its beneficial effects on plant growth

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Plant-associated bacteria play an important role in the enhancement of plant growth and productivity. Gluconacetobacter azotocaptans is an exceptional bacterium considering that till today it has been isolated and reported only from Mexico and Canada. It is a plant growth-promoting bacterium and can be used as biofertilizer for different crops and vegetables. The objective of the current study was to evaluate the inoculation effect of Gluconacetobacter azotocaptans DS1, Pseudomonas putida CQ179, Azosprillium zeae N7, Azosprillium brasilense N8, and Azosprillium canadense DS2, on the growth of vegetables including cucumber, sweet pepper, radish, and tomato. All strains increased the vegetables’ growth; however, G. azotocaptans DS1 showed better results as compared to other inoculated and control plants and significantly increased the plant biomass of all vegetables. Therefore, the whole genome sequence of G. azotocaptans DS1 was analyzed to predict genes involved in plant growth promotion, secondary metabolism, antibiotics resistance, and bioremediation of heavy metals. Results of genome analysis revealed that G. azotocaptans DS1 has a circular chromosome with a size of 4.3 Mbp and total 3898 protein-coding sequences. Based on functional analysis, genes for nitrogen fixation, phosphate solubilization, indole acetic acid, phenazine, siderophore production, antibiotic resistance, and bioremediation of heavy metals including copper, zinc, cobalt, and cadmium were identified. Collectively, our findings indicated that G. azotocaptans DS1 can be used as a biofertilizer and biocontrol agent for growth enhancement of different crops and vegetables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Pyshkin AV (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496

    Article  PubMed  CAS  Google Scholar 

  • Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, Duran HGS, De Los Santos EL, Kim HU, Nave M (2017) antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 45(W1):W36–W41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burnley LE (2000) Heavy metal resistance in the genus Gluconobacter. Thesis, Master of Science in Biology, Faculty of Virginia Tech, Blacksburg, VA, USA

  • Cardozo VF, Oliveira AG, Nishio EK, Perugini MR, Andrade CG, Silveira WD, Durán N, Andrade G, Kobayashi RK, Nakazato G (2013) Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann Clin Microbiol Antimicrob 12:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavalcante VA, Dobereiner J (1988) A new acid tolerant nitrogen fixing bacterium associated with sugarcane. Plant Soil 108(1988):23–31

    Article  Google Scholar 

  • Chandra H, Kumari P, Bisht R, Prasad R, Yadav S (2020) Plant growth promoting Pseudomonas aeruginosa from Valeriana wallichii displays antagonistic potential against three phytopathogenic fungi. Mol Biol Rep 47:6015–6026

    Article  PubMed  CAS  Google Scholar 

  • Chong TM, Yin WF, Chen JW, Mondy S, Grandclément C, Faure D, Dessaux Y, Chan KG (2016) Comprehensive genomic and phenotypic metal resistance profile of Pseudomonas putida strain S13.1.2 isolated from a vineyard soil. AMB Express 6(1):95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darling AE, Mau B, Perna NT (2010) Progressive Mauve: multiple genome alignment with gene gain, loss, and rearrangement. PLoS ONE 5(6):e11147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duan J, Jiang W, Cheng Z, Heikkila JJ, Glick BR (2013) The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS ONE 8(3):e58640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eida AA, Bougouffa S, L’Haridon F, Alam I, Weisskopf L, Bajic VB, Saad MM, Hirt H (2020) Genome insights of the plant-growth promoting bacterium Cronobacter muytjensii JZ38 with volatile-mediated antagonistic activity against Phytophthora infestans. Front Microbiol 11:369

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Sayed M, Helal M (2016) Multiple heavy metal and antibiotic resistance of Acinetobacter baumannii Strain HAF-13 isolated from industrial effluents. Am J Microbiol Res 4:26–36

    CAS  Google Scholar 

  • Eskin N, Vessey K, Tian L (2014) Research progress and perspectives of nitrogen fixing bacterium, Gluconacetobacter diazotrophicus, in monocot plants. Int J Agron 2014:208383

    Article  CAS  Google Scholar 

  • Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol 9(11):803–816

    Article  PubMed  CAS  Google Scholar 

  • Fuentes-Ramirez LE, Bustillos-Cristales R, Tapia-Hernandez A, Jimenez-Salgado T, Wang ET, Martinez-Romero E, Caballero Mellado J (2001) Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51(Pt 4):1305–1314

    Article  PubMed  CAS  Google Scholar 

  • Ge X, Zhao Y, Hou W, Zhang W, Chen W, Wang J et al (2013) Complete genome sequence of the industrial strain Gluconobacter oxydans H24. Genome Announc 1(1):e00003-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Giongo A, Tyler HL, Zipperer UN, Triplett EW (2010) Two genome sequences of the same bacterial strain, Gluconacetobacter diazotrophicus PAL 5, suggest a new standard in genome sequence submission. Stand Gen Sci 2(3):309–317

    Article  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez AJ, Larraburu EE, Llorente BE (2015) Azospirillum brasilense increased salt tolerance of jojoba during in vitro rooting. Indian Crop Prod 76:41–48

    Article  CAS  Google Scholar 

  • Guo DJ, Singh RK, Singh P, Li DP, Sharma A, Xing YX, Song XP, Yang LT, Li YR (2020) Complete genome sequence of Enterobacter roggenkampii ED5, a nitrogen fixing plant growth promoting endophytic bacterium with biocontrol and stress tolerance properties, isolated from sugarcane root. Front Microbiol 11:580081

    Article  PubMed  PubMed Central  Google Scholar 

  • Illeghems K, De Vuyst L, Weckx S (2013) Complete genome sequence and comparative analysis of Acetobacter pasteurianus 386B, a strain well-adapted to the cocoa bean fermentation ecosystem. BMC Genomics 14:526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S (2018) High-throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9:5114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF et al (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:354–357

    Article  CAS  Google Scholar 

  • Kang SM, Asaf S, Khan AL, Lubna KA, Mun BG et al (2020) Complete genome sequence of Pseudomonas psychrotolerans CS51, a plant growth-promoting bacterium, under heavy metal stress conditions. Microorganisms 8:382

    Article  PubMed Central  CAS  Google Scholar 

  • Laili NS, Radziah O, Zaharah SS (2017) Isolation and characterization of plant growth promoting rhizobacteria (PGPR) and their effects on growth of strawberry (Fragaria ananassa Duch.). Bangladesh J Bot 46:277–282

    Google Scholar 

  • Matsutani M, Suzuki H, Yakushi T, Matsushita K (2014) Draft genome sequence of Gluconobacter thailandicus NBRC 3257. Stand Genomic Sci 9(3):614–623

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51:326–335

    Article  PubMed  Google Scholar 

  • Mehnaz S, Lazarovits G (2017) Gluconacetobacter azotocaptans: a plant growth-promoting bacteria. In: Mehnaz S (ed) Rhizotrophs: plant growth promotion to bioremediation microorganisms for sustainability, vol 2. Springer, Singapore, pp 1–14

    Google Scholar 

  • Mehnaz S, Weselowski B, Lazarovits G (2006) Isolation of Gluconacetobacter azotocaptans from corn rhizosphere. Syst Appl Microbiol 29(6):496–501

    Article  PubMed  CAS  Google Scholar 

  • Mehnaz S, Weselowski B, Lazarovits G (2007) Azospirillum zeae sp. nov., diazotrophic bacteria isolated from rhizosphere soil of Zea mays. Int J Syst Evol Microbiol 57(12):2805–2809

    Article  PubMed  CAS  Google Scholar 

  • Mehnaz S, Baig DN, Lazarovits G (2010) Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microbiol Biotechnol 20:1614–1623

    Article  PubMed  CAS  Google Scholar 

  • Miura H, Mogi T, Ano Y, Migita CT, Matsutani M, Yakushi T et al (2013) Cyanideinsensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd. J Biochem 153:535–545

    Article  PubMed  CAS  Google Scholar 

  • Mogi T, Ano Y, Nakatsuka T, Toyama H, Muroi A, Miyoshi H et al (2009) Biochemical and spectroscopic properties of cyanide-insensitive quinol oxidase from Gluconobacter oxydans. J Biochem 146:263–271

    Article  PubMed  CAS  Google Scholar 

  • Morley RE (2013) Impact of free-living diazotrophs, Azospirillum lipoferum and Gluconacetobacter azotocaptans, on growth and nitrogen utilization by wheat (Triticum aestivum cv. Lillian). Dissertation, University of Saskatchewan

  • Mukhtar S, Shahid I, Mehnaz S, Malik KA (2017) Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum). Microbiol Res 205:107–117

    Article  PubMed  CAS  Google Scholar 

  • Mukhtar S, Ahmad S, Bashir A, Mirza MS, Mehnaz S, Malik KA (2019) Identification of plasmid encoded osmoregulatory genes from halophilic bacteria isolated from the rhizosphere of halophytes. Microbiol Res 228:26307

    Article  CAS  Google Scholar 

  • Mukhtar S, Zareen M, Khaliq Z, Mehnaz S, Malik KA (2020) Phylogenetic analysis of halophyte-associated rhizobacteria and effect of halotolerant and halophilic phosphate-solubilizing biofertilizers on maize growth under salinity stress conditions. Appl Microbiol 128:556–573

    Article  CAS  Google Scholar 

  • Muthukumarasamy R, Revathi G, Seshadri S, Simhan CL (2002) Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Curr Sci 83(2):137–145

    CAS  Google Scholar 

  • Muthukumarasamy R, Cleenwerck I, Revathi G et al (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28:277–286

    Article  PubMed  CAS  Google Scholar 

  • Peters B, Mientus M, Kostner D, Junker A, Liebl W, Ehrenreich A (2013) Characterization of membrane bound dehydrogenases from Gluconobacter oxydans 621H via whole-cell activity assays using multideletion strains. Appl Microbiol Biotechnol 97:6397–6412

    Article  PubMed  CAS  Google Scholar 

  • Plata G, Henry CS, Vitkup D (2015) Long-term phenotypic evolution of bacteria. Nature 517(7534):369–372

    Article  PubMed  CAS  Google Scholar 

  • Shahid I, Rizwan M, Baig DN, Saleem RS, Malik KA, Mehnaz S (2017) Secondary metabolites production and plant growth promotion by Pseudomonas chlororaphis subsp. aurantiaca strains isolated from cotton, cactus and para grass. J Microbiol Biotechnol 27:480–491

    Article  PubMed  CAS  Google Scholar 

  • Singh RK, Singh P, Li HB, Guo DJ, Song QQ, Yang LT et al (2020) Plant-PGPR interaction study of plant growth-promoting diazotrophs Kosakonia radicincitans BA1 and Stenotrophomonas maltophilia COA2 to enhance growth and stress-related gene expression in Saccharum spp. J Plant Interact 15:427–445

    Article  CAS  Google Scholar 

  • Taghavi S, Garafola C, Monchy S (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wang C, Li Q, Zhang J, Ji C, Sui J, Liu Z, Song X, Liu X (2018) Isolation and characterization of antagonistic bacteria with the potential for biocontrol of soil-borne wheat diseases. J Appl Microbiol 125(6):1868–1880

    Article  CAS  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol 32(2):67–71

    Article  CAS  Google Scholar 

  • Xu YB, Chen M, Zhang Y, Wang M, Wang Y, Huang QB et al (2014) The phosphotransferase system gene ptsI in the endophytic bacterium Bacillus cereus is required for biofilm formation, colonization, and biocontrol against wheat sharp eyespot. FEMS Microbiol Lett 354:142–152

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D, Tanasupawat S, Nakagawa Y (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58(5):397–404

    Article  PubMed  CAS  Google Scholar 

  • Yssel AEJ, Vanderleyden J, Steenackers HP (2017) Repurposing of nucleoside- and nucleobase-derivative drugs as antibiotics and biofilm inhibitors. J Antimicrob Chemother 72:2156–2170

    Article  PubMed  CAS  Google Scholar 

  • Zanker H, Lurz G, Langridge U, Langridge P, Kreusch D, Schröder J (1994) Octopine and nopaline oxidases from Ti plasmids of Agrobacterium tumefaciens: molecular analysis, relationship, and functional characterization. J Bacteriol 176(15):4511–4517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are highly thankful to the Higher Education Commission, Pakistan (HEC; Project No. 20-3134) and Agriculture and Agri-Food Canada for funding of this research work. We also gratefully acknowledge Dr. Kamran Azeem (Mohammad Ali Jinnah University, Karachi, Pakistan) for his help in sequence analysis and bioinformatics work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samina Mehnaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3496 KB)

Supplementary file2 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhtar, S., Farooq, M., Baig, D.N. et al. Whole genome analysis of Gluconacetobacter azotocaptans DS1 and its beneficial effects on plant growth. 3 Biotech 11, 450 (2021). https://doi.org/10.1007/s13205-021-02996-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02996-1

Keywords

Navigation