Skip to main content
Log in

Combinatorial approach for improved production of whole-cell 3-aminopropionic acid in recombinant Bacillus megaterium: codon optimization, gene duplication and process optimization

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this study, we aimed to develop a Bacillus megaterium based whole-cell biocatalyst for the bio-production of 3-aminopropionic acid (3-APA). l-aspartate-α-decarboxylases (ADC) (EC: 4.1.1.11) from Escherichia coliB. megateriumCorynebacterium glutamicum, and Bacillus subtilis were expressed in B. megaterium. B. subtilis derived ADC (panDBs) exhibited the highest ADC activity of 0.9 ± 0.02 U/mL in recombinant B. megaterium. Combination of codon optimization and gene duplication strategies resulted in 415.56% enhancement of ADC activity compared to panDBs. The culture growth conditions of B. megaterium (BMD-7) for 3-APA production were optimized as follows: inducer concentration, 0.5% (w/v); time of induction, 3 h; induction temperature, 37 °C and post-induction incubation time, 8 h. Improvement of the whole-cell biocatalytic process efficiency, was dealt by optimization of reaction temperature, reaction pH, metal ion additives and l-aspartic acid concentration. Shake flask level experiments yielded an enhanced 3-APA titer (16.18 ± 0.26 g/L) and a yield of 0.89 g/g under optimized conditions viz., 45 °C, pH 6.0 and 20 g/L of l-aspartic acid. This study demonstrates the potential of B. megaterium for 3-APA production and paves the scope for the development of 3-APA producing strains in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdulmughni A, Erichsen B, Hensel J, Hannemann F, Bernhardt R (2020) Improvement of the 25-hydroxyvitamin D3 production in a CYP109A2-expressing Bacillus megaterium system. J Biotechnol 325:355–359

    Article  PubMed  Google Scholar 

  • Biedendieck R (2016) A Bacillus megaterium system for the production of recombinant proteins and protein complexes. In: Vega M (ed) Advanced Technologies for Protein Complex Production and Characterization, vol 896. Springer, Cham, pp 97–113

    Chapter  Google Scholar 

  • Biedendieck R, Gamer M, Jaensch L, Meyer S, Rohde M, Deckwer W-D, Jahn D (2007) A sucrose-inducible promoter system for the intra-and extracellular protein production in Bacillus megaterium. J Biotechnol 132(4):426–430

    Article  CAS  PubMed  Google Scholar 

  • Bunk B, Schulz A, Stammen S, Münch R, Warren MJ, Jahn D, Biedendieck R (2010) A short story about a big magic bug. Bioengineered Bugs 1(2):85–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlson GH (1943) Preparation of beta-alanine. US Patent 2336067A

  • Feng Z, Zhang J, Chen G, Ge Y, Zhang X, Zhu H (2019) Extracellular expression of l-Aspartate-α-Decarboxylase from Bacillus tequilensis and its application in the biosynthesis of β-alanine. Appl Biochem Biotechnol 189(1):273–283

    Article  CAS  PubMed  Google Scholar 

  • Finger C, Gamer M, Klunkelfuß S, Bunk B, Biedendieck R (2015) Impact of rare codons and the functional coproduction of rate-limiting tRNAs on recombinant protein production in Bacillus megaterium. Appl Microbiol Biotechnol 99(21):8999–9010

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Pawar H, Pai O, Banerjee UC (2014) Microbial transformation of quinic acid to shikimic acid by Bacillus megaterium. Bioresour Bioprocess 1(1):1–6

    Article  CAS  Google Scholar 

  • Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  PubMed  Google Scholar 

  • Israni N, Venkatachalam P, Gajaraj B, Varalakshmi KN, Shivakumar S (2020) Whey valorization for sustainable polyhydroxyalkanoate production by Bacillus megaterium: production, characterization and in vitro biocompatibility evaluation. J Environ Manag 255:109884

    Article  CAS  Google Scholar 

  • Jin L, Li L, Zhou L, Zhang R, Xu Y, Li J (2019) Improving expression of bovine lactoferrin N-lobe by promoter optimization and codon engineering in Bacillus subtilis and its antibacterial activity. J Agric Food Chem 67(35):9749–9756

    Article  CAS  PubMed  Google Scholar 

  • Kiss FM, Lundemo MT, Zapp J, Woodley JM, Bernhardt R (2015) Process development for the production of 15 β-hydroxycyproterone acetate using Bacillus megaterium expressing CYP106A2 as whole-cell biocatalyst. Microb Cell Fact 14(1):1–13

    Article  CAS  Google Scholar 

  • Könst PM, Franssen MC, Scott EL, Sanders JP (2009) A study on the applicability of l-aspartate α-decarboxylase in the biobased production of nitrogen containing chemicals. Green Chem 11(10):1646–1652

    Article  Google Scholar 

  • Li H, Lu X, Chen K, Yang J, Zhang A, Wang X, Ouyang P (2018) β-alanine production using whole-cell biocatalysts in recombinant Escherichia coli. Molecular Catalysis 449:93–98

    Article  CAS  Google Scholar 

  • Maté-Muñoz JL, Lougedo JH, Garnacho-Castaño MV, Veiga-Herreros P, del Carmen L-E, García-Fernández P, de Jesús F, Guodemar-Pérez J, San Juan AF, Domínguez R (2018) Effects of β-alanine supplementation during a 5-week strength training program: A randomized, controlled study. J Int Soc Sports Nutr 15(1):1–12

    Article  Google Scholar 

  • Nehru G, Tadi SRR, Limaye AM, Sivaprakasam S (2020) Production and characterization of low molecular weight heparosan in Bacillus megaterium using Escherichia coli K5 glycosyltransferases. Int J Biol Macromol 160:69–76

    Article  CAS  PubMed  Google Scholar 

  • Pei W, Zhang J, Deng S, Tigu F, Li Y, Li Q, Cai Z, Li Y (2017) Molecular engineering of l-aspartate-α-decarboxylase for improved activity and catalytic stability. Appl Microbiol Biotechnol 101(15):6015–6021

    Article  CAS  PubMed  Google Scholar 

  • Phan A, Ngo T, Lenhoff H (1982) Spectrophotometric assay for lysine decarbox ylase. Anal Biochem 120(1):193–197

    Article  CAS  PubMed  Google Scholar 

  • Postaru M, Cascaval D, Galaction A-I (2015) Pantothenic acid -applications, synthesis and biosynthesis. Med Surg J 119(3):938–943

    Google Scholar 

  • Qian Y, Liu J, Song W, Chen X, Luo Q, Liu L (2018) Production of β-alanine from fumaric acid using a dual-enzyme cascade. ChemCatChem 10(21):4984–4991

    Article  Google Scholar 

  • Saito Y, Kitagawa W, Kumagai T, Tajima N, Nishimiya Y, Tamano K, Yasutake Y, Tamura T, Kameda T (2019) Developing a codon optimization method for improved expression of recombinant proteins in actinobacteria. Sci Rep 9(1):1–10

    Google Scholar 

  • Sha C, Yu X-W, Li F, Xu Y (2013) Impact of gene dosage on the production of lipase from Rhizopus chinensis CCTCC M201021 in Pichia pastoris. Appl Biochem Biotechnol 169(4):1160–1172

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Zhao L, Li Y, Zhang L, Shi G (2014) Synthesis of β-alanine from l-aspartate using l-aspartate-α-decarboxylase from Corynebacterium glutamicum. Biotech Lett 36(8):1681–1686

    Article  CAS  Google Scholar 

  • Song CW, Lee J, Ko Y-S, Lee SY (2015) Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metab Eng 30:121–129

    Article  CAS  PubMed  Google Scholar 

  • Stammen S, Müller BK, Korneli C, Biedendieck R, Gamer M, Franco-Lara E, Jahn D (2010) High-yield intra-and extracellular protein production using Bacillus megaterium. Appl Environ Microbiol 76(12):4037–4046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno S, Katayama T, Watanabe T, Nakajima K, Hayashi M, Shigematsu T, Fujii T (2013) Enzymatic production of γ-aminobutyric acid in soybeans using high hydrostatic pressure and precursor feeding. Biosci Biotechnol Biochem 77(4):706–713

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Malten M, Grote A, Jahn D, Deckwer WD (2007) Codon optimized Thermobifida fusca hydrolase secreted by Bacillus megaterium. Biotechnol Bioeng 96(4):780–794

    Article  CAS  PubMed  Google Scholar 

  • Yu X-J, Huang C-Y, Xu X-D, Chen H, Liang M-J, Xu Z-X, Xu H-X, Wang Z (2020) Protein engineering of a pyridoxal-5′-phosphate-dependent l-aspartate-α-decarboxylase from Tribolium castaneum for β-alanine production. Molecules 25(6):1280

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang T, Zhang R, Xu M, Zhang X, Yang T, Liu F, Yang S, Rao Z (2018) Glu56Ser mutation improves the enzymatic activity and catalytic stability of Bacillus subtilis L-aspartate α-decarboxylase for an efficient β-alanine production. Process Biochem 70:117–123

    Article  CAS  Google Scholar 

  • Zhou J, Liu H, Du G, Li J, Chen J (2012) Production of α-cyclodextrin glycosyltransferase in Bacillus megaterium MS941 by systematic codon usage optimization. J Agric Food Chem 60(41):10285–10292

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Guo L, Huang L, Li M, Zhang S, Yang A, Zhang Y, Zhu L, Zhang H, Zhang J (2020) Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli. Appl Microbiol Biotechnol 104(6):2545–2559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Department of Biotechnology, Govt. of India (Grant No. BT/PR15946/NER/95/485/2016). Authors acknowledge the Ministry of Human Resource and Development, New Delhi, India for fellowship.

Author information

Authors and Affiliations

Authors

Contributions

SRRT: Conceptualization, Methodology, Investigation, Writing—Original draft of the manuscript. GN: Methodology and Investigation support, Review & Editing, SS: Project administration, Supervision, Writing—Review & Editing.

Corresponding author

Correspondence to Senthilkumar Sivaprakasam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tadi, S.R.R., Nehru, G. & Sivaprakasam, S. Combinatorial approach for improved production of whole-cell 3-aminopropionic acid in recombinant Bacillus megaterium: codon optimization, gene duplication and process optimization. 3 Biotech 11, 333 (2021). https://doi.org/10.1007/s13205-021-02885-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02885-7

Keywords

Navigation