Skip to main content
Log in

Nanohybrid electrochemical enzyme sensor for xanthine determination in fish samples

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

An amperometric biosensor for xanthine was designed, based on covalent immobilization of xanthine oxidase (XO) of Bacillus pumilus RL-2d onto a screen-printed multi-walled carbon nanotubes gold nanoparticle-based electrodes (Nano-Au/c-MWCNT). The carboxyl groups at the electrode surface were activated by the use of 1-Ethyl-3-(3-dimethylaminopropyl carbodiimide) (EDC) and N-hydroxysuccinimide (NHS). The working electrode was then coated with 6 μL of xanthine oxidase (0.273 U/mg protein). The cyclic voltammetry (CV) study was done for the characterization of the sensor using [K3Fe(CN)6] as an artificial electron donor. The sensitivity (S) and the limit of detection (LOD) of the biosensor were 2388.88 µA/cm2/nM (2.388 µA/cm2/µM) and 1.14 nM, respectively. The developed biosensor was used for determination of fish meat freshness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alomirah HF, Ali I, Gibbs BF, Konishi Y (1998) Identification of proteolytic products as indicators of quality in ground and whole meat. J Food Qual 21:299–316

    Article  CAS  Google Scholar 

  • Arslan F, Yasar A, Kili E (2006) An amperometric biosensor for xanthine determination prepared from xanthine oxidase immobilized in polypyrrole film. Artif Cells Blood Substit Immobil Biotechnol 34:113–128

    Article  Google Scholar 

  • Basniwal RK, Chauhan RPS, Parvez S, Jain VK (2013) Development of cholesterol by chronoamperometric deposition of polyaniline-Ag nanocomposites. Int J Polym Mater 62:493–498

    Article  CAS  Google Scholar 

  • Bory C, Chanting C, Boulieu R (1996) Comparison of capillary electrophoretic and liquid chromatographic determination of hypoxanthine and xanthine for the diagnosis of xanthinuria. J Chromatogr A 730:329–331

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Kalcher K, Neuhold C (1994) Simultaneous determination of uric acid, xanthine and hypoxanthine with an electrochemically pretreated carbon paste electrode. Fresenius J Anal Chem 348:660–665

    Article  CAS  Google Scholar 

  • Chabard JL, Lartigue-Mattei C, Vedrine F, Petit J, Berger JA (1980) Mass fragmentographic determination of xanthine and hypoxanthine in biological fluids. J Chromatogra B: Biomed Sci Appl 221:9–17

    Article  CAS  Google Scholar 

  • Coopera N, Khosravanb R, Erdmanna C, Fienea J, Lee JW (2006) Quantification of uric acid, xanthine and hypoxanthine in human serum by HPLC for pharmacodynamic studies. J Chromatogr B 837:1–10

    Article  Google Scholar 

  • Dalkiran B, Erden PE, Kilic E (2017) Amperometric biosensors based on carboxylated multiwalled carbon nanotubesmetal oxide nanoparticles-7,7,8,8-tetracyanoquinodimethane composite for the determination of xanthine. Talanta 167:286–295

    Article  CAS  PubMed  Google Scholar 

  • Dervisevic M, Dervisevic E, Cevik E, Senel M (2017) Novel electrochemical xanthine biosensor based on chitosanepolypyrroleegold nanoparticles hybrid bio-nanocomposite platform. J Food Drug Anal 25:510–519

    Article  CAS  PubMed  Google Scholar 

  • Devi R, Yadav S, Pundir CS (2012) Amperometric detection of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase. Analyst 137:754–759

    Article  CAS  PubMed  Google Scholar 

  • Devi R, Yadav S, Nehra R, Yada S, Pundir CS (2013) Sensitive and selective xanthine amperometric sensors based on calcium carbonate nanoparticles. J Food Eng 115:207–214

    Article  CAS  Google Scholar 

  • Gupta S, Kaushal A, Kumar A, Kumar D (2016) Multiwalled carbon nanotubes based immunosensor for diagnosis of celiac disease. Cell Mol Biol 62:139–141

    Google Scholar 

  • Hlavay J, Haemmerli SD, Guilbault GG (1994) Fibre-optic biosensor for hypoxanthine and xanthine based on a chemiluminescence reaction. Biosens Bioelectron 9:189–195

    Article  CAS  PubMed  Google Scholar 

  • Kalimuthu P, John SA (2009) Simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine using a nanostructured polymer film modified electrode. Talanta 80:1686–1691

    Article  PubMed  Google Scholar 

  • Kalimuthu P, Leimkuhler S, Bernhardt PV (2012) Low-potential amperometric enzyme biosensor for xanthine and hypoxanthine. Anal Chem 84:10359–10365

    Article  CAS  PubMed  Google Scholar 

  • Kathiwala M, Affum AO, Perry J, Brajter-Toth A (2008) Direct measurements of xanthine in 2000-fold diluted xanthinuric urine with a nanoporous carbon fiber sensor. Analyst 133:810–816

    Article  CAS  PubMed  Google Scholar 

  • Khajehsharif H, Pourbasheer E (2011) Acid in real matrix by orthogonal signal correction–partial least squares. J Iran Chem Soc 8:1113–1119

    Article  Google Scholar 

  • Kilinc E, Erdem A, Gokgunnec L, Dalbasti T, Karaoglan M, Ozsoz M (1998) Buttermilk based cobalt phthalocyanine dispersed ferricyanide mediated amperometric biosensor for the determination of xanthine. Electroanalysis 20:273–275

    Article  Google Scholar 

  • Kito M, Tawa R, Takeshima S, Hirose S (1983) Fluorometric determination of hypoxanthine and xanthine in biological fluids by high-performance liquid chromatography using enzyme reactors. J Chromatogr B: Biomed Sci Appl 278:35–42

    Article  CAS  Google Scholar 

  • Lavanya N, Sekar C, Murugan R, Ravi G (2016) An ultrasensitive electrochemical sensor for simultaneous determination of xanthine, hypoxanthine and uric acid based on Co doped CeO2 nanoparticles. Mat Sci Eng C 65:278–286

    Article  CAS  Google Scholar 

  • Lawal AT, Adeloju SB (2008) Polypyrrole-based xanthine oxidase pootentiometric biosensor for hypoxanthine. J Appl Sci 8:2599–2605

    Article  CAS  Google Scholar 

  • Lin Z, Sun J, Chen J, Guo L, Chen Y, Chen G (2008) Electrochemiluminescent biosensor for hypoxanthine based on the electrically heated carbon paste electrode modified with xanthine oxidase. Anal Chem 80:2826–2831

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Nie L, Tao W, Yao S (2004) Amperometric study of Au-colloid function on xanthine biosensor based on xanthine oxidase immobilized in polypyrrole layer. Electroanalysis 16:1271–1278

    Article  Google Scholar 

  • Masoud R, Ali B, Sajjad G, Saleheh A, Hamid RZ (2018) Electrochemical investigation of the inhibition effect of carvacrol on xanthine oxidase activity merging with theoretical studies. Process Biochem 83:86–95

    Google Scholar 

  • Monika SNK, Thakur N, Sheetal S, Bhalla TC (2019) Xanthine oxidase of Acinetobacter calcoaciticus RL2-M4: Production, purification and characterization. Protein Expr Purif 160:36–44

    Article  CAS  PubMed  Google Scholar 

  • Mousty C (2010) Biosensing applications of clay-modified electrodes: a review. Anal Bioanal Chem 396:315–325

    Article  CAS  PubMed  Google Scholar 

  • Mu G, Luan F, Xu L, Hu F, Liu H, Gao Y (2012) Determination of purines in soybean milk by capillary electrophoresis in comparison with high performance liquid chromatography. Anal Methods 4:3386–3391

    Article  CAS  Google Scholar 

  • Pingarron JM, Paloma YS, Araceli GC (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848–5866

    Article  CAS  Google Scholar 

  • Rashed MS, Saadallah AA, Rahbeeni Z, Eyaid W, Seidahmed MZ, Al-Shahwan S, Salih MAM, Osman ME, Al-Amoudi M, Al-Ahaidib L, Jacob M (2005) Determination of urinary S-sulphocysteine, xanthine, and hypoxanthine by liquid chromatography–electrospray tandem mass spectrometry. Biomed Chromatogr 12:223–230

    Article  Google Scholar 

  • Sadeghi S, Fooladi E, Malekaneh M (2014) A nanocomposite/crude extract enzyme-based xanthine biosensor. Anal Biochem 464:51–59

    Article  CAS  PubMed  Google Scholar 

  • Saleheh A, Sajjad G, Ali B, Masoud R, Ali AS (2018) An in-depth view of potential dual effect of thymol in inhibiting xanthine oxidase activity: electrochemical measurements in combination with four way PARAFAC analysis and molecular docking insights. Int J boil Macromol 119:1298–1310

    Article  Google Scholar 

  • Samira Y, Ali B, Saleheh A, Masoud R (2019) Enzyme-based ultrasensitive electrochemical biosensor using poly(l-aspartic acid)/MWCNT bio-nanocomposite for xanthine detection: a meat freshness marker. Microchem J 149:104000

    Article  Google Scholar 

  • Shan D, Wang Y, Xue H, Cosnier S (2009a) Sensitive and selective xanthine amperometric sensors based on calcium carbonate nanoparticles. Sen Actuat B 136:510–515

    Article  CAS  Google Scholar 

  • Shan D, Wang Y, Xue H, Cosnier S, Ding SN (2009b) Xanthine oxidase/laponite nanoparticles immobilized on glassy carbon electrode: Direct electron transfer and multielectrocatalysis. Biosens Bioelectron 24:3556–3561

    Article  CAS  PubMed  Google Scholar 

  • Shan D, Wang Y, Zhu M, Xue H, Cosnier S, Wang C (2009c) Development of a high analytical performance-xanthine biosensor based on layered double hydroxides modified-electrode and investigation of the inhibitory effect by allopurinol. Biosens Bioelectron 24:1171–1176

    Article  CAS  PubMed  Google Scholar 

  • Sharma AL, Kumar P, Deep A (2012) Highly sensitive glucose sensing with multi-walled carbon nanotubes—polyaniline composite. Polym Plast Technol Eng 51:1382–1387

    Article  CAS  Google Scholar 

  • Shin MJ, Kim JG, Shin JS (2013) Amperometric cholesterol biosensor using layer-by-layer adsorption technique on polyaniline-coated polyester films. Int J Polym Mater Polym Biomater 62:140–144

    Article  CAS  Google Scholar 

  • Si Y, Park JW, Jung S, Hwang GS, Goh E, Lee HJ (2018) Layer-by-layer electrochemical biosensors configuring xanthine oxidase and carbon nanotubes/graphene complexes for hypoxanthine and uric acid in human serum solutions. Biosens Bioelectron 15:265–271

    Article  Google Scholar 

  • Teng YJ, Chen C, Zhou CX, Zhao HL, Lan MB (2010) Disposable amperometric biosensors based on xanthine oxidase immobilized in the Prussian blue modified screen-printed three electrode system. Sci China Chem 53:2581–2586

    Article  CAS  Google Scholar 

  • Villalonga R, Diez P, Gamella M, Reviejo J, Pingarron JM (2011) Immobilization of xanthine oxidase on carbon nanotubes through double supramolecular junctions for biosensor construction. Electroanalysis 23:1790–1796

    Article  CAS  Google Scholar 

  • Wang Y (2011) Simultaneous determination of uric acid, xanthine and hypoxanthine at poly (pyrocatechol violet)/functionalized multi-walled carbon nanotubes composite film modified electrode. Colloids Surf B 88:614–621

    Article  CAS  Google Scholar 

  • Yamamoto T, Moriwaki Y, Takahashi S, Tsutsumi Z, Ji Y, Nasako Y, Hiroishi K, Higashino K (1996) Determination of human plasma xanthine oxidase activity by high-performance liquid chromatography. J Chromatogr B: Biomed Sci App 681:395–400

    Article  CAS  Google Scholar 

  • Yang M, Yang Y, Liu Y, Shen G, Yu R (2006) Platinum nanoparticles–doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens Bioelectron 21:1125–1131

    Article  CAS  PubMed  Google Scholar 

  • Zen JM, Lai YY, Yang HH, Kumar SA (2002) Multianalyte sensor for the simultaneous determination of hypoxanthine, xanthine and uric acid based on a preanodized nontronite-coated screen-printed electrode. Sen Actuat B 84:237–244

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University Grants Commission vide F. No. 39-274/2010 (SRF) to Nirmal Kant Sharma for financial assistance. Tek Chand Bhalla greatly acknowledges UGC, New Delhi for BSR-Faculty Fellowship (F. No. 18-1/2011 (BSR)/24th Feb 2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tek Chand Bhalla.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interests.

Ethical statement

The authors declare no studies with animals or human participant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N.K., Monika, Kaushal, A. et al. Nanohybrid electrochemical enzyme sensor for xanthine determination in fish samples. 3 Biotech 11, 212 (2021). https://doi.org/10.1007/s13205-021-02735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02735-6

Keywords

Navigation