Skip to main content

Advertisement

Log in

Bioinoculation using indigenous Bacillus spp. improves growth and yield of Zea mays under the influence of nanozeolite

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Bio-inoculants play an important role for sustainable agriculture. Application of nanocompounds in the agriculture sector provides strength and is reported to enhance crop production but the combined effect of nanocompounds and plant growth-promoting rhizobacteria on plants has not been studied much. Therefore, the present study was planned to observe the effect of two plant growth promotory Bacillus spp. along with nanozeolite on maize under field conditions using a randomized block design. Combined treatment of nanozeolite and bio-inoculants promoted plant height, root length, fresh and dry weight of shoot and root, chlorophyll, carotenoids, total sugar, protein and phenol contents in maize significantly over control. Enhanced level of catalase, peroxidase, superoxide dismutase, phenols, alcohols and acid-esters in treated plants over control showed their role in stress management. An increase of 29.80% in maize productivity over control was reported in the combined treatment of Bacillus sp. and nanozeolite. Our results indicate that the application of bio-inoculants with nanozeolite showed a positive response on the health and productivity of maize plants. Hence, these may be used to enhance the productivity of different crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CNPs:

Chitosan nanoparticles

TiO2 :

Titanium oxide

NPs:

Nanoparticles

DMSO:

Dimethyl sulfoxide

SOD:

Superoxide dismutase

BSA:

Bovine serum albumin

References

  • Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2:875–877

    Article  CAS  PubMed  Google Scholar 

  • Aminiyan MM, Hosseini H, Heydariyan A (2018) Microbial communities and their characteristics in a soil amended by nanozeolite and some plant residues: short time in-situ incubation. Eurasian J Soil Sci 7:9–19

    CAS  Google Scholar 

  • Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty D, Erande MB, Late DJ (2015) Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants. J Sci Food Agric 95:2772–2778

    Article  CAS  PubMed  Google Scholar 

  • Chandlee JM, Scandalios JG (1984) Analysis of variants affecting the catalase developmental program in maize scutellum. Theor Appl Genet 69:71–77

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary P, Sharma A (2019) Response of nanogypsum on the performance of plant growth promotory bacteria recovered from nanocompound infested agriculture field. Environ Ecol 37:363–372

    Google Scholar 

  • Chavan S, Sarangdhar V, Nadanathangam V (2020) Toxicological effects of TiO2 nanoparticles on plant growth promoting soil bacteria. Emerg Contam 6:87–92

    Article  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Calorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2012) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:659–1664

    Google Scholar 

  • Ghervariya KK, Desai PB (2014) Rhizobacteria of sugarcane: in vitro screening for their plant growth -promoting potentials. Res J Recent Sci 3:52–58

    Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physio 59:309–314

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Mat 13:109–117

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation, Scientifica, London

    Google Scholar 

  • Gui X, Rui M, Song Y, Ma Y, Rui Y, Zhang P, He X, Li Y, Zhang Z, Liu L (2017) Phytotoxicity of CeO2 nanoparticles on radish plant (Raphanus sativus). Environ Sci Pollut Res 24:13775–13781

    Article  CAS  Google Scholar 

  • Jia X, Meng Q, Zeng H, Wang W, Yin H (2016) Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid–mediated signalling pathway. Sci Rep 6:26144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katiyar D, Hemantaranjan A, Singh B (2015) Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review Indian. J Plant Physiol 20:1–9

    Google Scholar 

  • Khati P, Sharma A, Gangola S, Kumar R, Bhatt P, Kumar G (2017a) Impact of some agriusable nanocompounds on soil microbial activity: an indicator of soil health. Clean-Soil Air Water 45:1600458

    Article  CAS  Google Scholar 

  • Khati P, Chaudhary P, Gangola S, Bhatt P, Sharma A (2017b) Nanochitosan supports growth of Zea mays and also maintains soil health following growth. 3 Biotech 7:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Khati P, Parul BP, Nisha KR, Sharma A (2018) Effect of nanozeolite and plant growth -promoting rhizobacteria on maize. 3 Biotech 8:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Khati P, Chaudhary P, Gangola S, Sharma A (2019a) Influence of nanozeolite on plant growth promotory bacterial isolates recovered from nanocompound infested agriculture field. Environ Ecol 37:521–527

    Google Scholar 

  • Khati P, Sharma A, Chaudhary P, Singh AK, Gangola S, Kumar R (2019b) High- throughput sequencing approach to access the impact of nanozeolite treatment on species richness and evens of soil metagenome. Biocatal Agric Biotechnol 20:101249

    Article  Google Scholar 

  • Kirk JOT, Allen RL (1965) Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochem Biophys Res Commun 21:523–530

    Article  CAS  PubMed  Google Scholar 

  • Kukreti B, Sharma A, Chaudhary P, Agri U, Maithani D (2020) Influence of nanosilicon dioxide along with bioinoculants on Zea mays and its rhizospheric soil. 3 Biotech 10:345

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Sharma A, Chaudhary P, Khati P (2020) Management of plant vigor and soil health using two agriusable nanocompounds and plant growth promotory rhizobacteria in Fenugreek. 3 Biotech 10:461

    Article  PubMed  PubMed Central  Google Scholar 

  • Latif HH, Ghareib M, Tahon MA (2017) Phytosynthesis of silver nanoparticles using leaf extracts from Ocimum basilicumand Mangifira indicaand their effect on some biochemical attributes of Triticum aestivum. Gesunde Pflanzen 69:39–46

    Article  CAS  Google Scholar 

  • Mali PC, Vyas SP, Satish LL (1989) Biochemical components of clusterbean genotypes in relation to bacterial blight. Indian Phytopathol 42:559–561

    Google Scholar 

  • Mousavi-Kouhi SM, Lahouti M, Ganjeali A, Entezari MH (2015) Comparative effects of ZnO nanoparticles, ZnO bulk particles, and Zn2þ on Brassica napus after long-term exposure: changes in growth, biochemical compounds, antioxidant enzyme activities, and Zn bioaccumulation. Water Air Soil Poll 226:364

    Article  CAS  Google Scholar 

  • Mukherjee A, Sun Y, Morelius E, Tamez C, Bandyopadhyay S, Niu G, White JC, Peralta-Videa JR, Gardea-Torresdey JL (2016) Differential toxicity of bare and hybrid ZnO nanoparticles in green pea (Pisum sativum L.): a life cycle study. Front Plant Sci 6:1242

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair P, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 9:154–163

    Article  CAS  Google Scholar 

  • Ok CH, Anderson SH, Ervin EH (2003) Amendments and construction systems for improving the performance of sand-based putting greens. Agron J 95:1583–1590

    Article  Google Scholar 

  • Olczyk T (2005) Vegetarian news letter. Horticultural sciences department: a vegetable crops extension publication. Vegetarian

  • Ozyigit II, Filiz E, Vatansever R, Kurtoglu KY, Koc I, Öztürk MX, Anjum NA (2016) Identification and comparative analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches. Front Plant Sci 7:301

    Article  PubMed  PubMed Central  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7:1584–1594

    Article  CAS  PubMed  Google Scholar 

  • Ramesh K, Biswas AK, Somasundaram J, Subba Rao A (2010) Nanoporous zeolites in farming: current status and issues ahead. Curr Sci 99:760–765

    Google Scholar 

  • Ramesh M, Palanisamy K, Babu K, Sharma NK (2014) Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Glob Biosci 3:415–422

    Google Scholar 

  • Rui M, Ma C, White JC, Hao Y, Wang Y, Tang X, Yang J, Jiang F, Ali A, Rui Y, Cao W, Chen G, Xing B (2018) Metal oxide nanoparticles alter peanut (Arachis hypogaea L.) physiological response and reduce nutritional quality: a life cycle study. Environ Sci Nano 5:2088–2102

    Article  CAS  Google Scholar 

  • Soil Survey Staff (2010) Keys to soil taxonomy, 11th edn. USDA-Natural Resources Conservation Service, Washington

    Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci 8:902–908

    Article  CAS  Google Scholar 

  • Timmusk S, Seisenbaeva G, Behers L (2018) Titania (TiO2) nanoparticles enhance the performance of growth-promoting rhizobacteria. Sci Rep 8:617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripathi DK, Shweta S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2016) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 7:1

    Google Scholar 

  • Tyagi J, Varma A, Pudake RN (2017) Evaluation of comparative effects of arbuscular Mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress. Eur J Soil Biol 81:1–10

    Article  CAS  Google Scholar 

  • Urbonaviciute A, Samuoliene G, Sakalauskaite J, Duchovskis P, Brazaityte A, Siksnianiene JB, Ulinskaite R, Sabajeviene G, Baranauskis K (2006) The effect of elevated CO2 concentrations on leaf carbohydrate, chlorophyll contents and photosynthesis in radish. Pol J Environ Stud 15:921–925

    CAS  Google Scholar 

  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2017) Enhanced plant growth-promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jiang F, Ma C, Rui Y, Tsang DCW, Xing B (2019) Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study. J Environ Manage 241:319–327

    Article  PubMed  CAS  Google Scholar 

  • Yadav V (2013) Nanotechnology, big things from a tiny world: a review. Adv Electr Electron Eng 3:771–778

    Google Scholar 

  • Zakry FAA, Shamsuddin ZH, Khairuddin AR, Zakaria ZZ, Anuar AR (2012) Inoculation of Bacillus sphaericus UPMB10 to young oil palm and measurement of its uptake of fixed nitrogen using the 15N isotope dilution technique. Microbes Environ 27:257–262

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao L (2012) Stress response and tolerance of Zea maysto CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6:9615–9622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao LJ, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun YP, Niu GH (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759

    Article  CAS  PubMed  Google Scholar 

  • Boczkowski J, Hoet P (2009) What’s new in nanotoxicology? Implications for public health from a brief review of the 2008 literature. Nanotoxicology 4:1–14

    Article  CAS  Google Scholar 

  • Siddaiah NC, Prasanth HVK, Satyanarayana RN, Mudili V, Gupta KV, Kalagatur KN, Satyavati T, Dai FX, Chen YJ, Mocan A, Singh PB, Kumar R, Srivastava, (2018) Chitosan nanoparticles having higher degree of acetylation induce resistance against pearl millet downy mildew through nitric oxide generation. Sci Rep 8:2485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf and tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Heinen RB, Ye Q, Chaumont F (2009) Role of aquaporins in leaf physiology. J Exp Bot 11:2971–2985

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Mahakham W, Ajit K, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7:8263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial support provided by UCB, Haldi, Uttarakhand in a form of a project. Facilities provided by Department of Agronomy and Plant Breeding and Genetics are duly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

PC: experimental design and research work participated in all experiments and wrote the manuscript. PK: isolated and characterized the bacterial culture used in the experiment. AC: helped in data interpretation. SG: participated in analysis of agronomical parameters of maize crop. RK: provided the field facilities and nanozeolite used in the experiment. AS: provided the laboratory facilities and critical checking of the manuscript.

Corresponding author

Correspondence to Parul Chaudhary.

Ethics declarations

Conflict of interest

Authors declare that they have no conflicts of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, P., Khati, P., Chaudhary, A. et al. Bioinoculation using indigenous Bacillus spp. improves growth and yield of Zea mays under the influence of nanozeolite. 3 Biotech 11, 11 (2021). https://doi.org/10.1007/s13205-020-02561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02561-2

Keywords

Navigation