Skip to main content
Log in

Investigation of alkaline hydrogen peroxide pretreatment to enhance enzymatic hydrolysis and phenolic compounds of oil palm trunk

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Alkaline hydrogen peroxide (AHP) as a pretreatment effectively enhances the increasing enzymatic digestibility of oil palm trunk (OPT) for conversion to biofuels and bioproducts in the biorefinery processes. The effect of hydrogen peroxide concentration (1–5%), temperature (50–90 °C), and time (30–90 min) were studied to find out the optimum condition for the removal of lignin. The optimum condition attained at 70 °C, 30 min, and 3% H2O2 g /g of biomass not only increased the cellulose content from 38.67% in raw material to 73.96% but also removed lignin and hemicellulose up to 50% and 57.12%, respectively. The AHP-treated fibers subjected to enzyme hydrolysis showed significant improvement in glucose concentration that increased from 11.77 (± 0.84) g/L (raw material) to 46.15 (± 0.32) g/L with 59.82% enzyme digestibility at 96 h. Scanning electron microscopy (SEM) and Fourier transformation infrared (FT-IR) were employed to analyze the morphology and structural changes of untreated and AHP-treated fibers. SEM results showed disruption of the intact OPT structure resulting in increase of enzyme accessibility to cellulose. The FT-IR identified changes in peaks which indicated structural transformation and dissolution of both lignin and hemicellulose molecules caused by AHP treatment. The black liquor obtained from AHP treatment contained about 5.13 mg gallic acid equivalent (GAE)/g of dry sample of total phenolic content (TPC) and an antioxidant activity of 59.80% and 65.51% inhibitions of DPPH and ABTS assays, respectively. Hence, it is a sustainable approach to utilize waste for the recovery of multiple value-added products during pretreatment process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arshanitsa A, Ponomarenko J, Dizhbite T, Andersone A, Gosselink RJA, Putten JVD, Telysheva G (2013) Fractionation of technical lignins as a tool for improvement of their antioxidant properties. J Anal Appl Prol 103:78–85

    Article  CAS  Google Scholar 

  • Alvarez-Vasco C, Zhang X (2013) Alkaline hydrogen peroxide pretreatment of softwood: hemicellulose degradation pathways. Bioresour Technol 150:321–327

    Article  CAS  PubMed  Google Scholar 

  • Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis. A review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Alzagameem A, Hansen BEK, Büchner D, Larkins M, Kamm B, Witzleben S, Margit S (2018) Lignocellulosic biomass as source for lignin-based environmentally benign antioxidants. Molecules 23:1–25

    Article  CAS  Google Scholar 

  • Azmi IS, Azizan A, Salleh MD (2018) Pretreatment of oil palm frond (OPF) with ionic liquid IOP. Conf Ser Mater Sci Eng 358:012071

    Article  Google Scholar 

  • Bajpai P (2012) Environmentally benign approaches for pulp bleaching, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Beukes N, Pletschke BI (2011) Effect of alkaline pre-treatment on enzyme synergy for efficient hemicellulose hydrolysis in SB. Bioresour Technol 102:207–5213

    Article  CAS  Google Scholar 

  • Boateng C, Lee KT, Bahruddin S (2014) A biorefinery concept for simultaneous recovery of cellulosic ethanol and phenolic compounds from oil palm fronds: process optimization. Energy Convers Manag 81:192–200

    Article  CAS  Google Scholar 

  • Cabrera E, Munoz MJ, Martin R, Caro I, Curbelo C, Diaz AB (2014) Alkaline and alkaline peroxide pretreatments at mild temperature to enhance enzymatic hydrolysis of rice hulls and straw. Bioresour Technol 167:1–7

    Article  CAS  PubMed  Google Scholar 

  • Chen CZ, Li MF, Wu YY, Sun RC (2015) Structural characterization of lignin extracted with alkaline hydrogen peroxide from furfural residue. Cell Chem Technol 49:153–163

    CAS  Google Scholar 

  • Chen SF, Mowery RA, Scarlata CJ, Chambliss CK (2007) Compositional analysis of water-soluble materials in corn stover. J Agric Food Chem 55:5912–5918

    Article  CAS  PubMed  Google Scholar 

  • Chieng BW, Lee SH, Ibrahim NA, Then YY, Loo YY (2017) Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers 9:1–11

    Article  CAS  Google Scholar 

  • Chin KL, H’ng PS, Wong LJ, Tey BT, Paridah MT (2011) Production of glucose from oil palm trunk and sawdust of rubberwood and mixed hardwood. Appl Energy 88:4222–4228

    Article  CAS  Google Scholar 

  • Correia JAD, Marques JE, Goncalves LRB, Rocha MVP (2013) Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters. Bioresour Technol 139:249–256

    Article  PubMed  CAS  Google Scholar 

  • Decker EA (1998) Antioxidant mechanisms. In: Akoh CC, Min DB (eds) Food lipids—chemistry, nutrition, and biotechnology. Marcel Dekker, New York, pp 397–421

    Google Scholar 

  • Draude KM, Kurniawan CB, Duff SJB (2001) Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material. Bioresour Technol 79:113–120

    Article  CAS  PubMed  Google Scholar 

  • Diaz AB, Blandino A, Belleli C, Caro I (2014) An effective process for pretreating rice husk to enhance enzyme hydrolysis. Ind Eng Chem Res 53:10870–10875

    Article  CAS  Google Scholar 

  • Gould JM (1984) Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol Bioeng 24:46–52

    Article  Google Scholar 

  • Gould JM (1985) Enhanced polysaccharide recovery from agricultural residues and perennial grasses treated with alkaline hydrogen peroxide. Biotechnol Bioeng 27:893–896

    Article  CAS  PubMed  Google Scholar 

  • Gosselink RJA, Snijder MHB, Kranenbarg A, Keijsers ERP, de Jong E, Stigsson LL (2004) Characterization and application of Nova Fiber lignin. Ind Crop Prod 20:191–203

    Article  CAS  Google Scholar 

  • Gupta R, Lee YY (2009) Pretreatment of hybrid poplar by aqueous ammonia. Biotechnol Prog 25:357–364

    Article  CAS  PubMed  Google Scholar 

  • Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL (1998) High-molecular weight plant phenolics (tannins) as biological antioxidants. J Agric Food Chem 46:1887–1892

    Article  CAS  PubMed  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  CAS  PubMed  Google Scholar 

  • Jia N, Li SM, Ma MG, Zhu JF, Suna C (2011) Synthesis and characterization of cellulose-silica composite fiber in ethanol/water mixed solvents. BioResources 6:1186–1195

    CAS  Google Scholar 

  • Kachrimanidou V, Kopsahelis N, Alexandri M, Strati A, Gardeli C, Papanikolaou S, Koutinas AA (2015) Integrated sunflower-based biorefinery for the production of antioxidants, protein isolate and poly (3-hydroxybutyrate). Ind Crop Prod 71:106–113

    Article  CAS  Google Scholar 

  • Kumneadklang S, Larpkiattaworn S, Niyasom C, Thong SO (2015) Bioethanol production from oil palm frond by simultaneous saccharification and fermentation. Energy Procedia 79:784–790

    Article  CAS  Google Scholar 

  • Lamaming J, Sulaiman R, PengLeh C, Sugimoto T, Nordin NA (2015) Cellulose nanocrystals isolated from oil palm trunk. Carbohydr Polym 127:202–208

    Article  CAS  PubMed  Google Scholar 

  • Lai YZ (2001) Chemical degradation. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Basel, New York, pp 443–512

    Google Scholar 

  • Li Z, Chen CH, Liu T, Mathrubootham V, Hegg EL, Hodge DB (2013) Catalysis with CuII (bpy) improves alkaline hydrogen peroxide pretreatment. Biotechnol Bioeng 110:1078–1086

    Article  CAS  PubMed  Google Scholar 

  • Li M, Pattathil S, Hahn MG, Hodge DB (2014) Identification of features associated with plant cell wall recalcitrance to pretreatment by alkaline hydrogen peroxide in diverse bioenergy feedstocks using glycome profiling. RSC Adv 4:17282–17292

    Article  CAS  Google Scholar 

  • Li J, Lu M, Guo X, Zhang H, Li Y, Han L (2018) Insights into the improvement of alkaline hydrogen peroxide (AHP) pretreatment on the enzymatic hydrolysis of corn stover: chemical and microstructural analyses. Bioresour Technol 265:1–7

    Article  CAS  PubMed  Google Scholar 

  • Meliana Y, Setiawan AH (2016) Antioxidant activity of lignin phenolic compounds as by product of pretreatment process of bioethanol production from empty fruits palm bunch. AIP Conf Proc 1712:050011–050015

    Article  Google Scholar 

  • Mesquita JF, Ferraz A, Aguiar A (2016) Alkaline-sulfite pretreatment and use of surfactants during enzymatic hydrolysis to enhance ethanol production from sugarcane bagasse. Bioprocess Biosyst Eng 39:441–448

    Article  CAS  PubMed  Google Scholar 

  • Mokhothu TH, John JC (2015) Review on hygroscopic aging of cellulose fibres and their biocomposites. Carbohyd Polym 131:337–354

    Article  CAS  Google Scholar 

  • Mosier N, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  • Niemi H, Lahti J, Hatakka H, Karki S, Rovio S, Kallioinen M, Manttari M, Louhi KM (2011) Fractionation of organic and inorganic compounds from black liquor by combining membrane separation and crystallization. Chem Eng Technol 34:593–598

    Article  CAS  Google Scholar 

  • Okoh SO, Asekun OT, Familoni OB, Anthony JA (2014) Antioxidant and free radical scavenging capacity of seed and shell essential oils extracted from Abrus precatorius (L). Antioxidants 3:278–287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palamae S, Palachum W, Chisti Y, Choorit W (2014) Retention of hemicellulose during delignification of oil palm empty fruit bunch (EFB) fiber with per acetic acid and alkaline peroxide. Biomass Bioenerg 66:240–248

    Article  CAS  Google Scholar 

  • Pan GX, Bolton JL, Leary GJ (1998) Determination of ferulic and p-coumaric acids in wheat straw and the amounts released by mild acid and alkaline peroxide treatment. J Agric Food Chem 46:5283–5288

    Article  CAS  Google Scholar 

  • Panagiotou G, Olsson L (2007) Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol Bioeng 96:250–258

    Article  CAS  PubMed  Google Scholar 

  • Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity—relating pH to biomatrix opening. Rev N Biotechnol 27:739–750

    Article  CAS  Google Scholar 

  • Pezoa R, Cortinez V, Hyvarinen S (2010) Use of ionic liquids in the pretreatment of forest and agricultural residues for the production of bioethanol. Cell Chem Technol 44:165–172

    CAS  Google Scholar 

  • Phitsuwan P, Sakka K, Ratanakhanokchai K (2016) Structural changes and enzymatic response of Napier grass (Pennisetum purpureum) stem induced by alkaline pretreatment. Bioresour Technol 218:247–256

    Article  CAS  PubMed  Google Scholar 

  • Rabetafika HN, Bchir B, Blecker C, Paquot M, Wathelet B (2014) Comparative study of alkaline extraction process of hemicelluloses from pear pomace. Biomass Bioenerg 61:254–264

    Article  CAS  Google Scholar 

  • Rabelo SC, Maciel R, Costa AC (2008) A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production. Appl Biochem Biotech 148:45–58

    Article  CAS  Google Scholar 

  • Rabelo SC, Andrade RR, Filho RM, Costa AC (2013) Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane bagasse to ethanol. Fuel 136:349–357

    Article  CAS  Google Scholar 

  • Reddy N, Yang Y (2005) Bio fibers from agricultural byproducts for industrial applications. Trends Biotechnol 23:22–27

    Article  CAS  PubMed  Google Scholar 

  • Rojith G, Singh B (2013) Hydrogen peroxide pretreatment efficiency comparison and characterisation of lignin recovered from coir pith black liquor. J Environ Res Dev 7:1333–1339

    CAS  Google Scholar 

  • Ross AB, Jones JM, Kubacki ML, Bridgeman T (2008) Classification of macroalgae as fuel and its thermochemical behavior. Bioresour Technol 99:6494–6504

    Article  CAS  PubMed  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  PubMed  Google Scholar 

  • Saha BC (2004) Lignocellulose biodegradation and applications in biotechnology. In: Saha BC, Hayashi K (eds) Lignocellulose biodegradation. American Chemical Society, Washington DC, pp 2–34

    Chapter  Google Scholar 

  • Santos PSB, Erdocia X, Gatto DA, Labidi J (2014) Characterisation of Kraft lignin separated by gradient acid precipitation. Ind Crops Prod 55:149–154

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:26–289

    Article  CAS  Google Scholar 

  • Serrano ML, Delarosa SM, Campos-Martín JM, Fierro DLG (2019) Fractionation of lignocellulosic biomass by selective precipitation from ionic liquid dissolution. Appl Sci 9:1–17

    Google Scholar 

  • Shahirah MNN, Gimbun J, Pang SF, Zakria RM, Cheng CK, Chua GK, Asras MFF (2015) Influence of nutrient addition on the bioethanol yield from oil palm trunk sap fermented by Saccharomyces cerevisiae. J Ind Eng Chem 23:213–217

    Article  CAS  Google Scholar 

  • Shen G, Tao H, Zhao M, Yang B, Wen D, Yuan Q, Rao G (2011) Effect of hydrogen peroxide pretreatment on the enzymatic hydrolysis of cellulose. J Food Process Eng 34:905–921

    Article  CAS  Google Scholar 

  • Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) Acomparison of chemical pretreatment methods for improving saccharificationof cotton stalks. Bioresour Technol 98:3000–3011

    Article  CAS  PubMed  Google Scholar 

  • Song X, Jiang Y, Rong X, Wei W, Wang S, Nie S (2016) Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide. Bioresour Technol 216:1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Songprom K, Laemsak N, Sirisansaneeyakul S, Vanichsriratana W, Prakulsuksatid P (2011) Improvement of chemical composition of Oil palm trunk by steam explosion and alkaline extraction, pp 356–364. In the proceedings of 49th Kasetsart University Annual Conference (subject Agro-Industry) Kasetsart University, Bangkok (in Thai)

  • Souko ET, Alexandri M, Fernandes KV, Freire DMG, Mallouchos A, Koutinas AA (2019) Extraction of phenolic compounds from palm oil processing residues and their application as antioxidants. Food Technol Biotechnol 57:29–38

    Article  CAS  Google Scholar 

  • Sroka Z, Cisowski W (2003) Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol 41:753–758

    Article  CAS  PubMed  Google Scholar 

  • Sun SN, Cao XF, Xu F, Jones GL, Baird M (2014) Alkaline and organosolv lignins from furfural residue: structural features and antioxidant activity. BioResources 9:772–785

    Google Scholar 

  • Sun FB, Wang L, Hong JP, Ren JL, Du FG, Hu JG, Zhang ZY, Zhou BW (2015) The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw. Bioresour Technol 187:354–361

    Article  CAS  PubMed  Google Scholar 

  • Upajak S, Laosiripojana N, Champreda V, Kreethachart T, Imman S (2018) Effect of combination of liquid hot water system and hydrogen peroxide pretreatment on enzymatic saccharification of corn cob. Int J GEOMATE 15:31–38

    Article  Google Scholar 

  • Yang B, Boussaid A, Mansfield SD, Gregg DJ, Saddler JN (2002) Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates. Biotechnol Bioeng 77:678–684

    Article  CAS  PubMed  Google Scholar 

  • Yetti M, Syukri A, Haska N (2012) Potency of oil palm trunk as feedstock for the production of bioethanol by enzymatic hydrolysis. MP3EI Reports

  • Yilmaz Y, Yildiz O, Hosgun EZ, Bozan B (2016) Effect of hydrogen peroxide concentration and temperature on alkali pre-treatment of sunflower stalks for fermentable sugar. ISESCO Sci Technol 12:19–23

    Google Scholar 

  • Wang K, Yang H, Chen Q, Sun RC (2013) Influence of delignification efficiency with alkaline peroxide on the digestibility of furfural residues for bioethanol production. Bioresour Technol 146:208–214

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Hou X, Sun J, Li M, Chen Z, Gao Z (2018) Comparison of ultrasound-assisted ionic liquid and alkaline pretreatment of Eucalyptus for enhancing enzymatic saccharification. Bioresour Technol 254:145–150

    Article  CAS  PubMed  Google Scholar 

  • Williams D (2014) Impact of alkaline hydrogen peroxide pretreatment on cell wall properties that contribute to improved enzymatic digestibility of structural carbohydrates to be utilized for biofuel production. Doctoral dissertation, Michigan State University

  • Xue S, Uppugundla N, Bowman MJ, Cavalier D, Sousa LDC, Dale BC, Balan V (2015) Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis. Biotechnol Biofuels 8:195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Huang S, Wei W, Zhang J, Xie J (2019) Investigation of alkaline hydrogen peroxide pretreatment and Tween 80 to enhance enzymatic hydrolysis of sugarcane bagasse. Biotechnol Biofuels 12:2–9

    Article  Google Scholar 

  • Zhu JY, Wang GS, Pan XJ, Gleisner R (2009) Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification. Chem Eng Sci 64:474–485

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Funding of this work has been provided jointly by the NRTC (The office of the national Research Council of Thailand) in Collaboration with NSFC (The national Natural Science Foundation of China). The authors acknowledge the support of Graduate School, Kasetsart University and the Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramuk Parakulsuksatid.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest regarding submission and publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tareen, A.K., Punsuvon, V. & Parakulsuksatid, P. Investigation of alkaline hydrogen peroxide pretreatment to enhance enzymatic hydrolysis and phenolic compounds of oil palm trunk. 3 Biotech 10, 179 (2020). https://doi.org/10.1007/s13205-020-02169-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02169-6

Keywords

Navigation