Skip to main content
Log in

Enhanced synthesis of alginate oligosaccharides in Pseudomonas mendocina NK-01 by overexpressing MreB

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effects of cytoskeleton protein MreB on bacterial cell morphology and the synthesis of alginate oligosaccharides (AO) and polyhydroxyalkanoate (PHA) by Pseudomonas mendocina NK-01. To overexpress the mreB gene, an expression vector encoding MreB-GFP fusion protein was constructed. The scanning electron microscope (SEM) showed that cells expressing MreB were longer than the wild ones, which agrees with MreB’s relationship with the synthesis of peptidoglycan. Cells expressing the MreB-GFP fusion protein emitted green fluorescence under a fluorescence microscope, suggesting that MreB was functionally expressed in strain NK-01. Under a confocal laser scanning microscope, MreB was observed as located around the cell membrane. Furthermore, the recombinant strain could synthesize 0.961 g/L AO, which was 5.86-fold higher than wild-type strain. Through the medium optimization test, we finally selected the addition of 20 g/L glucose as the optimal glycogen addition for AO fermentation based on a high AO yield and high substrate transformation efficiency. The results indicated that overexpression of MreB affected the cell morphology, the activity of AO polymerase, and the efficiency of AO secretion. However, the synthesis of PHA for recombinant strain was slightly reduced. The results suggested that the overexpression of this cytoskeleton protein affected the yield of specific intracellular and extracellular products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microb Rev 54:450–472

    CAS  Google Scholar 

  • Biondi EG, Marini F, Altieri F, Bonzi L, Bazzicalupo M, del Gallo M (2004) Extended phenotype of an mreB-like mutant in Azospirillum brasilense. Microbiology 150:2465–2474

    Article  CAS  Google Scholar 

  • Bork P, Sander C, Valencia A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci USA 89:290–7294

    Article  Google Scholar 

  • Chaki T, Kakimi H, Shibata A, Baba T (2006) Detection of alginate oligosaccharides from mollusks. Biosci Biotechnol Biochem 70:2793–2796

    Article  CAS  Google Scholar 

  • Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    Article  CAS  Google Scholar 

  • Fenton AK, Gerdes K (2013) Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli. EMBO J 32:1953–1965

    Article  CAS  Google Scholar 

  • Gitai Z, Dye N, Shapiro L (2004) An actin-like gene can determine cell polarity in bacteria. Proc Natl Acad Sci USA 101:8643–8648

    Article  CAS  Google Scholar 

  • Gitai Z, Dye NA, Reisenauer A, Wachi M, Shapiro L (2005) MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120:329–341

    Article  CAS  Google Scholar 

  • Goh YS, Tan IK (2012) Polyhydroxyalkanoate production by antarctic soil bacteria isolated from Casey Station and Signy Island. Microbiol Res 167:211–219

    Article  CAS  Google Scholar 

  • Guo W, Song C, Kong M, Geng W, Wang Y, Wang S (2011) Simultaneous production and characterization of medium-chain-length polyhydroxyalkanoates and alginate oligosaccharides by Pseudomonas mendocina NK-01. Appl Microbiol Biotechnol 92:791–801. https://doi.org/10.1007/s00253-011-3333-0

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Feng J, Geng W, Song C, Wang Y, Chen N et al (2012) Augmented production of alginate oligosaccharides by the Pseudomonas mendocina NK-01 mutant. Carbohydr Res 352:109–116

    Article  CAS  Google Scholar 

  • Ito M, Baba T, Mori H (2005) Functional analysis of 1440 Escherichia coli genes using the combination of knock-out library and phenotype microarrays. Metab Eng 7:318–327

    Article  CAS  Google Scholar 

  • Jones LJ, Carballido-Lopez R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922

    Article  CAS  Google Scholar 

  • Kruse T, Gerdes K (2005) Bacterial DNA segregation by the actin-like MreB protein. Trends Cell Biol 15:343–345

    Article  CAS  Google Scholar 

  • Kruse T, Møller-Jensen J, Løbner-Olesen A, Gerdes K (2003) Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J 22:5283–5292

    Article  CAS  Google Scholar 

  • Lin CZ, Guan HS, Li HH, Yu GL, Gu CX, Li GQ (2007) The influence of molecular mass of sulfated propylene glycol ester of low-molecular-weight alginate on anticoagulant activities. Eur Polym J 43:3009–3015

    Article  CAS  Google Scholar 

  • Nan B, Zusman DR (2011) Uncovering the mystery of gliding motility in the myxobacteria. Annu Rev Genet 45:21–39

    Article  CAS  Google Scholar 

  • Otterlei M, Ostgaard K, Skjåk-Braek G, Smidsrød O, Soon-Shiong P, Espevik T (1991) Induction of cytokine production human monocytes stimulated with alginate. J Immunother 10:286–291

    Article  CAS  Google Scholar 

  • Rehm BH, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25:3–19

    Article  CAS  Google Scholar 

  • Remminghorst U, Rehm BH (2006) Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28:1701–1712

    Article  CAS  Google Scholar 

  • Shih YL, Kawagishi I, Rothfield L (2005) The MreB and Min cytoskeletal-like systems play independent roles in prokaryotic polar differentiation. Mol Microbiol 58:917–928. https://doi.org/10.1111/j.1365-2958.2005.04841.x

    Article  CAS  PubMed  Google Scholar 

  • Shiomi D, Niki H (2013) A mutation in the promoter region of zipA, a component of the divisome, suppresses the shape defect of RodZ-deficient cells. MicrobiologyOpen 2:798–810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiomi D, Sakai M, Niki H (2008) Determination of bacterial rod shape by a novel cytoskeletal membrane protein. EMBO J 27:3081–3091

    Article  CAS  Google Scholar 

  • Shiomi D, Mori H, Niki H (2009) Genetic mechanism regulating bacterial cell shape and metabolism. Commun Integr Biol 2:219–220

    Article  CAS  Google Scholar 

  • Spizzirri UG, Parisi OI, Iemma F, Cirillo G, Puoci F, Curcio M et al (2010) Antioxidant-polysaccharide conjugates for food application by eco-friendly grafting procedure. Carbohydr Polym 79:333–340

    Article  Google Scholar 

  • van den Ent F, Amos L, Löwe J (2001) Bacterial ancestry of actin and tubulin. Curr Opin Microbiol 4:634–638

    Article  Google Scholar 

  • van den Ent F, Leaver M, Bendezu F, Errington J, de Boer P, Löwe J (2006) Dimeric structure of the cell shape protein MreC and its functional implications. Mol Microbiol 62:1631–1642

    Article  Google Scholar 

  • van Teeffelen S, Wang S, Furchtgott L, Huang KC, Wingreen NS, Shaevitz JW, Gitai Z (2011) The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc Natl Acad Sci USA 108:15822–15827

    Article  Google Scholar 

  • Varma A, Young KD (2009) In Escherichia coli, MreB and FtsZ direct the synthesis of lateral cell wall via independent pathways that require PBP2. J Bacteriol 191:3526–3533

    Article  CAS  Google Scholar 

  • Wang S, Furchtgott L, Huang KC, Shaevitz JW (2012) Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall. Proc Natl Acad Sci USA 109:E595–E604

    Article  Google Scholar 

  • Wang Y, Wu H, Jiang X, Chen GQ (2014) Engineering Escherichia coli for enhanced production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) in larger cellular space. Metab Eng 25:183–193

    Article  Google Scholar 

  • Williams SF, Peoples OP (1997) Making plastics green. Chem Br 33:29–32

    CAS  Google Scholar 

  • Zhang Z, Yu G, Guan H, Zhao X, Du Y, Jiang X (2004) Preparation and structure elucidation of alginate oligosaccharides degraded by alginate lyase from Vibro sp. 510. Carbohydr Res 339:1475–1481

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Funding of China (Grant Nos. 31570035 and 31670093), the Tianjin Natural Science Funding (Grant Nos. 17JCZDJC32100 and 18JCYBJC24500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shufang Wang or Chao Yang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1. The features of plasmid pBBR-mreB-gfp (TIFF 362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Gong, T., Wu, Y. et al. Enhanced synthesis of alginate oligosaccharides in Pseudomonas mendocina NK-01 by overexpressing MreB. 3 Biotech 9, 344 (2019). https://doi.org/10.1007/s13205-019-1873-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1873-7

Keywords

Navigation