Skip to main content
Log in

Chloroplast proteins involved in drought stress response in selected cultivars of common bean (Phaseolus vulgaris L.)

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

One of the major cell organelles, whose functions are affected during drought stress are chloroplasts. In this study, chloroplast proteome under drought was studied in two cultivars of common bean (Phaseolus vulgaris L), Tiber and more sensitive to drought, Starozagorski čern, which were subjected to drought for 6 and 13 days. A comparative proteomic analysis with 2D-DIGE was performed on the isolated chloroplast proteins from leaves. Together, 44 proteins with changed abundance between control and stressed plants were identified with LC–MS/MS from both cultivars. The majority of the identified proteins were involved in photosynthetic processes. The results showed a decrease in abundance in different structure components of photosystem I and II, and ATP synthase, which may indicate a suppression of light-dependent reactions by drought stress. Similar proteomic response for both cultivars after 6 and 13 days of drought was observed. Proteins with contrasting abundance patterns between the cultivars or proteins specific for only one cultivar, such as ferredoxin–NADP reductase, photosystem II stability/assembly factor HCF136, curvature thylakoid protein 1B, and plastidial membrane protein porin were pointed out as major identified proteins revealing differential abundance between the cultivars. Taken together, our results provide insight into the molecular response of chloroplasts in common bean under drought stress, whereas conclusions about the tolerance mechanisms require further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aas FE, Egge-Jacobsen W, Winther-Larsen HC et al (2006) Neisseria gonorrhoeae type IV pili undergo multisite, hierarchical modifications with phosphoethanolamine and phosphocholine requiring an enzyme structurally related to lipopolysaccharide phosphoethanolamine transferases. J Biol Chem 281:27712–27723

    Article  CAS  Google Scholar 

  • Anderson NL, Esquer-Blasco R, Hofmann JP et al (1991) A two-dimensional gel database of rat liver proteins useful in gene regulation and drug effects studies. Electrophoresis 12:907–930

    Article  CAS  Google Scholar 

  • Armbruster U, Labs M, Pribil M et al (2013) Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 25:2661–26678

    Article  CAS  Google Scholar 

  • Athar HR, Ashraf M (2005) Photosynthesis under drought stress. In: Pessarakli M (ed) Handbook of photosynthesis, 2nd edn. Taylor and Francis Inc, New York, pp 793–809

    Google Scholar 

  • Barajas-López JD, Blanco NE, Strand Å (2013) Plastid-to-nucleus communication, signals controlling the running of the plant cell. Biochim Biophys Acta 1833:425–437

    Article  Google Scholar 

  • Bittelli M (2011) Measuring soil water content: a review. HortTechnology 21:293–300

    Article  Google Scholar 

  • Bréhélin C, Kessler F, van Wijk KJ (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 2:260–266

    Article  Google Scholar 

  • Budič M, Cigič B, Šoštarič M et al (2016) The response of aminopeptidases of Phaseolus vulgaris to drought depends on the developmental stage of the leaves. Plant Physiol Biochem 109:326–336

    Article  Google Scholar 

  • Castañeda-Saucedo MC, Córdova-Téllez L, Tapia-Campos E et al (2014) Dehydrins patterns in common bean exposed to drought and watered conditions. Rev Fitotec Mex 7:59–68

    Google Scholar 

  • Hajheidari M, Abdollahian-Noghabi M, Askari H et al (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5:950–960

    Article  CAS  Google Scholar 

  • Han Q, Kang G, Guo T (2013) Proteomic analysis of spring freeze-stress responsive proteins in leaves of bread wheat (Triticum aestivum L.). Plant Physiol Biochem 63:236–244

    Article  CAS  Google Scholar 

  • He ZH, Li HW, Shen Y et al (2013) Comparative analysis of the chloroplast proteomes of a wheat (Triticum aestivum L.) single seed descent line and its parents. J Plant Physiol 170:1139–1147

    Article  CAS  Google Scholar 

  • Hieng B, Ugrinović K, Sustar-Vozlic J et al (2004) Different classes of proteases are involved in the response to drought of Phaseolus vulgaris L. cultivars differing in sensitivity. J Plant Physiol 161:519–530

    Article  CAS  Google Scholar 

  • Ji K, Wang Y, Sun W et al (2012) Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. J Plant Physiol 169:336–344

    Article  CAS  Google Scholar 

  • Kamal AH, Cho K, Choi JS et al (2013) Patterns of protein expression in water-stressed wheat chloroplasts. Biol Plant 57:305–312

    Article  CAS  Google Scholar 

  • Kang G, Li G, Zheng B et al (2012) Proteomic analysis on salicylic acid-induced salt tolerance in common wheat seedlings (Triticum aestivum L.). Biochim Biophys Acta 1824:1324–1333

    Article  CAS  Google Scholar 

  • King BR, Guda C (2007) ngLOC: an n-gram-based Bayesian method for estimating the subcellular proteomes of eukaryotes. Genome Biol 8:R68

    Article  Google Scholar 

  • Kley J, Heil M, Muck A et al (2010) Isolating intact chloroplasts from small Arabidopsis samples for proteomic studies. Anal Biochem 398:198–202

    Article  CAS  Google Scholar 

  • Komenda J, Nickelsen J, Tichy M et al (2008) The cyanobacteria homologue of HCF136/YCF48 is a component of an early photosystem II assembly complex and is important for both the efficient assembly and repair of photosystem II in Synechocystic sp. PCC 6803. J Biol Chem 283:22390–22399

    Article  CAS  Google Scholar 

  • Kosmala A, Perlikowski D, Pawłowicz I et al (2012) Changes in the chloroplast proteome following water deficit and subsequent watering in a high- and a low-drought-tolerant genotype of Festuca arundinacea. J Exp Bot 63:6161–6172

    Article  CAS  Google Scholar 

  • Kosová K, Vítámvás P, Urban MO et al (2018) Plant abiotic stress proteomics: the major factors determining alterations in cellular proteome. Front Plant Sci 9:122

    Article  Google Scholar 

  • Lang EGE, Mueller SJ, Hoernstein SNW et al (2011) Simultaneous isolation of pure and intact chloroplasts and mitochondria from moss as the basis for sub-cellular proteomics. Plant Cell Rep 30:205–215

    Article  CAS  Google Scholar 

  • Li C, Bian B, Gong T et al (2018) Comparative proteomic analysis of key proteins during abscisic acid-hydrogen peroxide-induced adventitious rooting in cucumber (Cucumis sativus L.) under drought stress. J Plant Physiol 229:185–194

    Article  CAS  Google Scholar 

  • Liu Y, Wu L, Baddeley JA et al (2011) Models of biological nitrogen fixation of legumes. A review. Agron Sustain Dev 31:155–172

    Article  Google Scholar 

  • Lorentzen E, Siebers B, Hensel R et al (2005) Mechanism of the Schiff base forming fructose-1,6-bisphosphate aldolase: structural analysis of reaction intermediates. Biochemistry 44:4222–4229

    Article  CAS  Google Scholar 

  • Lu C, Zhang J (1999) Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. J Exp Bot 50:1199–1206

    Article  CAS  Google Scholar 

  • Luna-Vital DA, Mojica L, Gonzalez de Mejía E et al (2015) Biological potential of protein hydrolysates and peptides from common bean (Phaseolus vulgaris L.): a review. Food Res Int 76:39–50

    Article  CAS  Google Scholar 

  • Maiwald D, Dietzmann A, Jahns P et al (2003) Knock-out of the genes coding for the Rieske protein and the ATP-synthase delta-subunit of Arabidopsis. Effects on photosynthesis, thylakoid protein composition, and nuclear chloroplast gene expression. Plant Physiol 133:191–202

    Article  CAS  Google Scholar 

  • Millar AH, Taylor NL (2014) Subcellular proteomics-where cell biology meets protein chemistry. Front Plant Sci 5:55

    Article  Google Scholar 

  • Moolna A, Bowsher CG (2010) The physiological importance of photosynthetic ferredoxin NADP + oxidoreductase (FNR) isoforms in wheat. J Exp Bot 61:2669–2681

    Article  CAS  Google Scholar 

  • Polania JA, Poschenrieder C, Beebe S et al (2016) Effective use of water and increased dry matter partitioned to grain contribute to yield of common bean improved for drought resistance. Front Plant Sci 7:660

    Article  Google Scholar 

  • Rottet S, Besagni C, Kessler F (2015) The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim Biophys Acta 1847:889–899

    Article  CAS  Google Scholar 

  • Tamburino R, Vitale M, Ruggiero A (2017) Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum L.). BMC Plant Biol 17:40

    Article  Google Scholar 

  • Timpte C (2001) Auxin binding protein: curiouser and curiouser. Trends Plant Sci 6:586–590

    Article  CAS  Google Scholar 

  • Uematsu K, Suzuki N, Iwamae T et al (2012) Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J Exp Bot 63:3001–3009

    Article  CAS  Google Scholar 

  • Utrillas MJ, Alegre L (1997) Impact of water stress on leaf anatomy and ultrastructure in Cynodon dactylon (L.) Pers. under natural conditions. Int J Plant Sci 158:313–324

    Article  Google Scholar 

  • Villordo-Pineda E, González-Chavira MM, Giraldo-Carbajo P et al (2015) Identification of novel drought-tolerant-associated SNPs in common bean (Phaseolus vulgaris). Front Plant Sci 6:546

    Article  Google Scholar 

  • Wang J, Yu Q, Xiong H et al (2016) Proteomic insight into the response of Arabidopsis chloroplasts to darkness. PLoS One 11:e0154235

    Article  Google Scholar 

  • Yang ZB, Eticha D, Führs H et al (2013) Proteomic and phosphoproteomic analysis of polyethylene glycol-induced osmotic stress in root tips of common bean (Phaseolus vulgaris L.). J Exp Bot 64:5569–5586

    Article  CAS  Google Scholar 

  • Yang H, Liu J, Wen X et al (2015) Molecular mechanism of photosystem I assembly in oxygenic organisms. Biochim Biophys Acta 1847:838–848

    Article  CAS  Google Scholar 

  • Zadražnik T, Hollung K, Egge-Jacobsen W et al (2013) Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J Proteomics 78:254–272

    Article  Google Scholar 

  • Zadražnik T, Egge-Jacobsen W, Meglič V et al (2017) Proteomic analysis of common bean stem under drought stress using in-gel stable isotope labeling. J Plant Physiol 209:42–50

    Article  Google Scholar 

  • Zargar SM, Mahajan R, Nazir M (2017a) Common bean proteomics: present status and future strategies. J Proteomics 169:239–248

    Article  CAS  Google Scholar 

  • Zargar SM, Gupta N, Nazir M et al (2017b) Impact of drought on photosynthesis: molecular perspective. Plant Gene 11:154–159

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovenian Research Agency (Z4-8223 and P4-0072).

Author information

Authors and Affiliations

Authors

Contributions

TZ and JŠV designed the experiment. TZ performed the proteomic experiment and the data analysis. AM performed mass spectrometry analysis and protein identification. All authors participated in manuscript writing and approved the manuscript.

Corresponding author

Correspondence to Tanja Zadražnik.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13205_2019_1862_MOESM1_ESM.xlsx

Experimental design for 2D-DIGE. Four replicates from each control and drought-stressed protein samples from two cultivars subjected to drought for 6 and 13 days were labelled and combined for 2D-DIGE

Supplementary material 1 (XLSX 11 kb)

The detailed list of identified proteins with peptides and identification parameters

Supplementary material 2 (XLSX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadražnik, T., Moen, A. & Šuštar-Vozlič, J. Chloroplast proteins involved in drought stress response in selected cultivars of common bean (Phaseolus vulgaris L.). 3 Biotech 9, 331 (2019). https://doi.org/10.1007/s13205-019-1862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1862-x

Keywords

Navigation