Skip to main content
Log in

Transcriptome sequencing of Himalayan Raspberry (Rubus ellipticus) and development of simple sequence repeat markers

3 Biotech Aims and scope Submit manuscript

Abstract

Key message

Rubus ellipticus is a wild crop having less number of EST-SSR markers. First attempt was made towards the transcriptomics data analysis and generation of EST-SSR markers which were used in genetic diversity and transferability studies.

Abstract

Rubus ellipticus is a raspberry with yellow fruits, native to tropical and subtropical India and Asia. Leaves of Rubus ellipticus ‘Kumarhatti’ collection were utilized for cDNA library construction. More than 15 million sequencing reads were generated using NextSeq 500 Illumina RNA-seq technology. The DNASTAR software was used for de novo assembly from which 7777 unigenes with an average length of 500 bp was obtained. These unigenes were annotated using public databases, including NCBI non-redundant and gene ontology. De novo assembly of R. ellipticus unigenes found the highest similarity to apple than to other members of Rosaceae. This is the first attempt to use the Illumina platform of RNA sequencing and de novo assembly for R. ellipticus without a reference genome. In this study, unigenes were used for SSR marker development. ESTs containing SSR motifs were extracted using an online Microsatellite Identification Tool (MISA). SSR primers were designed from the SSR containing 704 EST sequences using the Websat software. Total 304 EST-SSRs primers were successfully designed, out of which 68 randomly selected primer pairs were custom synthesized and used for validation. Real-time PCR was also performed to analyze the relationship of transcriptional factors with fruit ripening. Out of 68 primer pairs, 61 were found to be informative in R. ellipticus, whereas 65 primer pairs were informative in the five tested genera of Rosaceae, i.e., pear, peach, apple, rose, and strawberry with 95.3% and 93.5% polymorphism, leading to the conclusion that these marker systems are very efficient to carryout diversity and cross transferability study in Rosaceae genera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19(3):307–321

    Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Google Scholar 

  • Beier S, Thiel T, Munch T, Scholz U, Mascher M (2017) MISA-wed: a web server for microsatellite prediction. Bioinformatics 33(16):2583–2585

    Google Scholar 

  • Bushakra JM, Stephens MJ, Atmadjaja AN, Lewers KS, Symonds VV, Udall JA (2012) Construction of black (Rubusoccidentalis) and red (Rubusidaeus) raspberry linkage maps and their comparison to the genomes of strawberry, apple, and peach. Theor Appl Genet 125:311–327

    Google Scholar 

  • Castillo NRF, Reed BM, Graham J, Fernandez F, Bassil NV (2010) Microsatellite markers for raspberry and blackberry. J Am Soc Hortic Sci 13:271–282

    Google Scholar 

  • Castro P, Stafne ET, Clark JR, Lewers KS (2013) Genetic map of the primocane-fruiting and thornless traits of tetraploid blackberry. Theor Appl Genet 126:2521–2532

    Google Scholar 

  • Chagne D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H (2014) The draft genome sequence of European pear (Pyruscommunis L. ‘Bartlett’). PLoS One 9(4):e92644

    Google Scholar 

  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlanzer E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L). Batsch): isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Google Scholar 

  • Dale A, Moore PP, McNicol RJ, Sjulin TM, Burmistrov LA (1993) Genetic diversity of red raspberry varieties throughout the world. J Am Soc Hortic Sci 18:119–129

    Google Scholar 

  • Debnath SC (2008) Inter simple sequence repeat (ISSR) markers and pedigree information to assess genetic diversity and relatedness within raspberry genotypes. J Fruit Ornam Plant Res 7:1–17

    Google Scholar 

  • Decroocq V, Fave MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922

    Google Scholar 

  • Dossett M, Bassil NV, Lewer KS, Finn CE (2012) Genetic diversity in wild and cultivated black raspberry (Rubusoccidentalis L.) evaluated by simple sequence repeat markers. Genet Resour Crop Evol 10:40–57

    Google Scholar 

  • Ekblom R, Wolf JBW (2014) A field guide to whole genome sequencing, assembly and annotation. Evol Appl 7:1026–1042

    Google Scholar 

  • Gutierrez E, Villaraco AG, Lucas JA, Gradillas A, Manero FJG, Solano BR (2017) Transcriptomics, targeted metabolomics and gene expression of blackberry leaves and fruits indicate flavonoid metabolic flux from leaf to red fruit. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00472

    Google Scholar 

  • Hendre PS, Aggarwal RK (2014) Development of genic and genomic SSR markers of robusta coffee (Coffeacanephora Pierre Ex A. Froehner). PLoS ONE 9(12):e113661. https://doi.org/10.1371/journal.pone.0113661

    Google Scholar 

  • Honaas L, Kahn E (2017) A practical examination of RNA isolation methods for European pear (Pyruscommunis). BMC Res Notes 10:1–8

    Google Scholar 

  • Hyun TK, Lee S, Kumar D, Rim Y, Kumar R, Lee SY, Lee CH, Kim JY (2014a) RNA-seq analysis of Rubusidaeus cv. Nova: transcriptome sequencing and de novo assembly for subsequent functional genomics approaches. Plant Cell Rep 33:1617–1628

    Google Scholar 

  • Hyun TK, Lee S, Rim Y, Kumar R, Han X, Lee SY, Lee CH, Kim JY (2014b) De novo RNA sequencing and metabolite profiling to identify genes involved in anthocyanin biosynthesis in Korean black raspberry (RubuscoreanusMiquel). Plos One 9:e88292

    Google Scholar 

  • Ivamoto ST, Reis O, Domingues DS, Santos TBD, Oliveira FFD, Pot D, Leroy T, Vieira LGE, Carazzolle MF, Pereira GAG, Pereira LFP (2017) Transcriptome analysis of leaves, flowers and fruits perisperm of Coffeaarabica L. Reveals the differential expression of genes involved in raffinose biosynthesis. PLoS One 12:e0169595. https://doi.org/10.1371/journal.pone.0169595

    Google Scholar 

  • Jaccard P (1908) Nouvelles Recherches sur la distribution florale. Bulletin de la Societe Vaudoise des Sciences Naturelles 44:223–270

    Google Scholar 

  • Jenning DL (1988) Raspberry and blackberries: their breeding, disease and growth. Academic press, London, p 230

    Google Scholar 

  • Kaur R, Shilpa Vaidya E, Kumar K (2015) Development, characterization and transferability of peach genic SSRs to some Rosaceaespecies. Adv Res 3:165–180

    Google Scholar 

  • Langmead B, Salzberg SL (2013) Fast gapped-read alignment with Bowtie 2. Nat Method 9(4):357–359

    Google Scholar 

  • Li XW, Meng XQ, Jia HJ, Yu ML, Ma RJ, Wang LR, Cao K, Shen ZJ, Niu L, Tian JB, Chen MJ, Xie M, Arus P, Gao ZS, Aranzana MJ (2013) Peach genetic resources: diversity, population structure and linkage disequilibrium. BMC Genet 14:1–16

    Google Scholar 

  • Meng R, Finn C (2002) Determining ploidy level and nuclear DNA content in Rubusby flow cytometry. J Am Soc Hortic Sci 127:767–775

    Google Scholar 

  • Metz S, Cabrera JM, Rueda E, Giri F, Amavet P (2016) FullSSR: Microsatellite finder and primer designer. Adv Bioinform. https://doi.org/10.1155/2016/6040124

    Google Scholar 

  • Mnejja M, Garcia MM, Audergon MJ, Arus P (2010) Prunus microsatellite marker transferability across Rosaceous crops. Nat Genet 30:194–200

    Google Scholar 

  • Moore JN (1984) Blackberry breeding. Hortic Sci 19:183–185

    Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Google Scholar 

  • Rohlf FJ (2000) NTSYSpc numerical taxonomy and multivariate analysis version 2.0.h. Applied Biostatics Inc., New York, p 25

    Google Scholar 

  • Saklani S, Chandra S, Badoni PP, Dogra S (2012) Antimicrobial activity, nutritional profile and Phytochemical screening of wild edible fruit of Rubusellipticus. Int J Med Aromat Plants 2(2):269–274

    Google Scholar 

  • Samriti Kaur R, Shilpa Malhotra EV, Poonam Thakur D, Kumar K (2017) Assessment of genetic diversity in Rubus ellipticus (Smith) using molecular markers. Proc Indian Nat Sci Acad 83(3):669–679

    Google Scholar 

  • Schlautman B, Fajardo D, Bougie T, Wiesman E, Polashock J, Vorsa N, Steffan S, Zalapa J (2015) Development and validation of 697 novel polymorphic genomic and EST-SSR markers in the American cranberry (Vaccinium macrocarponAit.). Molecules 20:2001–2013

    Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3:1101–1108

    Google Scholar 

  • Sharma N, Kaur R, Vaidya E (2016) Potential of RAPD and ISSR markers for assessing genetic diversity among Stevia rebaudiana Bertoni accessions. Indian J Biotechnol 15:95–100

    Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL (2011) The genome of woodland strawberry (Fragariavesca). Nat Genet 43(2):109–116

    Google Scholar 

  • Smith JS, Chin EC, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Zeigle J (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisions with data from RFLPs and pedigree. Theor Appl Genet 95:163–173

    Google Scholar 

  • Thakur R (2013) Studies on development of genic-SSRs in raspberry (Rubusellipticus Smith.) and their transferabilityacross related species. MSc. Thesis. Dr Y S Parmar University of Horticulture and Forestry, Nauni, Solan, India, p 58

  • Thompson MM (1995) Chromosome numbers of Rubus species at the National clonal germplasm repository. HortScience 30:1447–1452

    Google Scholar 

  • Vaidya E, Kaur R, Kumar K, Sharma N (2015) Exploitation of Malus ESTs for development of SSR markers after insilico analysis. J Appl Bot Food Qual 88:164–169

    Google Scholar 

  • Van DT, Noordijk Y, Dubos T, Bink M, Meulenbroek B, Visser R (2012) Microsatellite allele dose and configuration establishment (MADCE): an integrated approach for genetic studies in allopolyploids. BMC Plant Biol 12:25–34

    Google Scholar 

  • Van DT, Pagliarani G, Pikunova A, Noordijk Y, Yilmaz-Temel H, Meulenbroek B (2014) Genomic rearrangements and signatures of breeding in the allo-octoploid strawberry as revealed through an allele dose based SSR linkage map. BMC Plant Biol 14:55–64

    Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A (2010) The genome of the domesticated apple (Malus x domesticaBorkh). Nat Genet 42(10):833–839

    Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan P, DelFabbro C, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arus P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar DS (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45(5):487–494

    Google Scholar 

  • Verma R, Gangarde T, Punasiya R, Ghulaxe C (2014) Rubusfruticosus (blackberry) use as an herbal medicine. Pharmacogn Rev 8:101–104

    Google Scholar 

  • Ward J, Bhangoo J, Fernandez F, Moore P, Swanson J, Viola R (2013) Saturated linkage map construction in Rubusidaeus using genotyping by sequencing and genome-independent imputation. BMC Genom 14:22–35

    Google Scholar 

  • Weber CA (2012) Raspberry variety review. Cornell Cooperative Extension, Cornell University, Ithaca

    Google Scholar 

  • Woodhead M, McCallum S, Smith K, Cardle L, Mazzitelli L, Graham J (2008) Identification, characterisation and mapping of simple sequence repeat (SSR) markers from raspberry root and bud ESTs. Mol Breed 22:555–563

    Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S (2013) The genome of the pear (PyrusbretschneideriRehd.). Genome Res 23(2):396–408

    Google Scholar 

  • Xu J, Liu L, Xu Y, Chen C, Rong T, Ali F, Zhou S, Wu F, Liu Y, Wang J, Cao M, Lu Y (2013) Development and characterization of simple sequence repeat markers providing genome-wide coverage and high resolution in maize. DNA Res 20:497–509

    Google Scholar 

  • You FM, Wanjugi H, Huo N, Lazo GR, Luo MC, Anderson OD, Dvorak J, Gu YQ (2010) RJ Primers: unique transposable element insertion junction discovery and PCR primer design for marker development. Nucleic Acids Res 38:313–320

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. SS designed, performed the experiments, and wrote the manuscript. Dr. RK was involved in planning and supervised the work. Dr. AKUS and Mr. HD contributed to the interpretation of the results, Dr. ST helped to carry out the RT-PCR analysis and interpretation of the RT-PCR results, and Dr. KK provided plant material for research

Corresponding author

Correspondence to Samriti Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Kaur, R., Solanke, A.K.U. et al. Transcriptome sequencing of Himalayan Raspberry (Rubus ellipticus) and development of simple sequence repeat markers. 3 Biotech 9, 161 (2019). https://doi.org/10.1007/s13205-019-1685-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1685-9

Keywords

Navigation