Skip to main content
Log in

Development of cleaved amplified polymorphic sequence (CAPS) and high-resolution melting (HRM) markers from the chloroplast genome of Glycyrrhiza species

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Licorice (Glycyrrhiza glabra) is an important medicinal crop often used as health foods or medicine worldwide. The molecular genetics of licorice is under scarce owing to lack of molecular markers. Here, we have developed cleaved amplified polymorphic sequence (CAPS) and high-resolution melting (HRM) markers based on single nucleotide polymorphisms (SNP) by comparing the chloroplast genomes of two Glycyrrhiza species (G. glabra and G. lepidota). The CAPS and HRM markers were tested for diversity analysis with 24 Glycyrrhiza accessions. The restriction profiles generated with CAPS markers classified the accessions (2–4 genotypes) and melting curves (2–3) were obtained from the HRM markers. The number of alleles and major allele frequency were 2−6 and 0.31–0.92, respectively. The genetic distance and polymorphism information content values were 0.16–0.76 and 0.15–0.72, respectively. The phylogenetic relationships among the 24 accessions were estimated using a dendrogram, which classified them into four clades. Except clade III, the remaining three clades included the same species, confirming interspecies genetic correlation. These 18 CAPS and HRM markers might be helpful for genetic diversity assessment and rapid identification of licorice species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SNP:

Single nucleotide polymorphism

CAPS:

Cleaved amplified polymorphic sequence

HRM:

High-resolution melting

INDEL:

Insertion and deletion

GD:

Genetic distance

PIC:

Polymorphism information content

N A :

Number of alleles

M AF :

Major allele frequency

SSR:

Simple sequence repeats

References

  • Arora V, Ghosh MK, Pal S, Gangopadhyay G (2017) Allele specific CAPS marker development and characterization of chalcone synthase gene in Indian mulberry (Morus spp., family Moraceae). PLoS ONE 12(6):e0179189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashurmetov OA (2009) Selection of parental pairs for obtaining hybrids in the genera Glycyrrhiza L. and Meristotropis Fisch. et Mey. Genet Res Crop Evol 43:167–171

    Article  Google Scholar 

  • Babu BK, Mathur RK, Kumar PN, Ramajayam D, Ravichandran G, Venu MVB, Babu SS (2017) Development, identification and validation of CAPS marker for SHELL trait which governs dura, pisifera and tenera fruit forms in oil palm (Elaeis guineensis Jacq.). PLoS ONE 12(2):e0171933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmen CD, Adriana K, Cristina D, Codruţa Ş, Dian A (2012) Glycyrrhiza glabra and Glycyrrhiza echinata—sources of low hemotoxic saponins. Acta Med Marisiensis 58(3):150–152

    Google Scholar 

  • Cavalli-Sforza LL, Edwards AW (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21:550–570

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X et al (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5(1):e8613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi GY, Kim YH, Chae SW, Lee HW, Ko BS, Lee MY (2011) Discrimination of Chinese Glycyrrhiza uralensis and Uzbek Glycyrrhiza glabra using taste sensor. Korean J Herbol 26:35–39

    Google Scholar 

  • Erayman M, Ilhan E, Güzel Y, Eren AH (2014) Transferability of SSR markers from distantly related legumes to Glycyrrhiza species. Turk J Agric For 38(1):32–38

    Article  Google Scholar 

  • Fenwick GR, Lutomski J, Nieman C (1990) Liquorice, Glycyrrhiza glabra L.—composition, uses and analysis. Food Chem 38(2):119–143

    Article  CAS  Google Scholar 

  • Fraunfelder FW (2005) Ocular side effects associated with dietary supplements and herbal medicines. Drugs Today 41:537–546

    Article  CAS  Google Scholar 

  • Ganopoulos I, Tsaballa A, Xanthopoulou A, Madesis P, Tsaftaris A (2013) Sweet cherry cultivar identification by high-resolution-melting (HRM) analysis using gene-based SNP markers. Plant Mol Biol Rep 31:763–768

    Article  CAS  Google Scholar 

  • Hayashi H, Hosono N, Kondo M, Hiraoka N, Ikeshiro Y, Shibano M, Kusano G, Yamamoto H, Inoue K (2000) Phylogenetic relationship of six Glycyrrhiza species based on rbcL sequences and chemical constituents. Biol Pharm Bull 23:602–606

    Article  CAS  PubMed  Google Scholar 

  • Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321

    Article  CAS  Google Scholar 

  • Jeong HJ, Jo YD, Park SW, Kang BC (2010) Identification of Capsicum species using SNP markers based on high resolution melting analysis. Genome 53:1029–1040

    Article  CAS  PubMed  Google Scholar 

  • Jo IH, Bang KH, Hong CE, Kim JU, Lee JW, Hyun DY, Ryu H, Kim DH (2016) Analysis of the chloroplast genome and SNP detection in a salt tolerant breeding line in Korean ginseng. J Plant Biotechnol 43:417–421

    Article  Google Scholar 

  • Kageyama Y, Suzuki H, Saruta T (1992) Glycyrrhizin induces mineralocorticoid activity through alterations in cortisol metabolism in the human kidney. J Endocrinol 135:147–152

    Article  CAS  PubMed  Google Scholar 

  • Kim DW, Kim RN, Choi SH, Kim DW, Nam SH, Choi HS, Koh HD, Kim A, Chae SH, Ahn JC et al (2011) EST analysis predicts putatively causative genes underlying the pharmaceutical application of Glycyrrhiza uralensis Fisch. Plant Mol Biol Rep 29:814–824

    Article  CAS  Google Scholar 

  • Kim HJ, Bae JY, Jang HN, Park SN (2013) Comparative study on the antimicrobial activity of Glycyrrhiza uralensis and Glycyrrhiza glabra extracts with various countries of origin as natural antiseptics. Microbiol Biotechnol Lett 41:358–366

    Article  CAS  Google Scholar 

  • Kim K, Lee SC, Lee J, Lee HO, Joh HJ, Kim NH, Park HS, Yang TJ (2015) Comprehensive survey of genetic diversity in chloroplast genomes and 45S nrDNAs within Panax ginseng species. PLoS ONE 10:e0117159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Lee J, Baek S, Ahn J, Hong K (2018) Identification of DNA molecular markers by comparison of Pinus densiflora and Pinus sylvestris chloroplast genomes. PeerJ (preprints) 6:e26506v1

    Google Scholar 

  • Kondo K, Shiba M, Nakamura R, Morota T, Shoyama Y (2007) Constituent properties of licorices derived from Glycyrrhiza uralensis, G. glabra, or G. inflata identified by genetic information. Biol Pharm Bull 30:1271–1277

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Jo JH (2004) A study on a morphological identification of Glycyrrhiza radix. Korean J Herbol 19:47–52

    Google Scholar 

  • Lee OR, Kim MK, Yang DC (2012) Authentication of medicinal plants by SNP-based multiplex PCR. In: Sucher NJ, Hennell JR, Carles MC (eds) Plant DNA fingerprinting and barcoding: methods and protocols. Humana Press, New York, pp 135–147

    Chapter  Google Scholar 

  • Liao WC, Lin YH, Chang TM, Huang WY (2012) Identification of two licorice species, Glycyrrhiza uralensis and Glycyrrhiza glabra, based on separation and identification of their bioactive components. Food Chem 132:2188–2193

    Article  CAS  Google Scholar 

  • Lim JM, Ahn YS, Park CG, Park CB, Cho JH (2012) Authentication of traded medicinal herb, Glycyrrhiza spp. (Licorice), based on nrDNA-ITS2 sequence analysis. J Korean Soc Int Agric 24:435–443

    Article  Google Scholar 

  • Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst 27:237–277

    Article  Google Scholar 

  • Liu JIE, Moeller M, Gao LM, Zhang DQ, Li DZ (2011) DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species. Mol Ecol Resour 11:89–100

    Article  CAS  PubMed  Google Scholar 

  • Mackay JF, Wright CD, Bonfiglioli RG (2008) A new approach to varietal identification in plants by microsatellite high resolution melting analysis: application to the verification of grapevine and olive cultivars. Plant Methods 4:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montoro P, Maldini M, Russo M, Postorino S, Piacente S, Pizza C (2011) Metabolic profiling of roots of liquorice (Glycyrrhiza glabra) from different geographical areas by ESI/MS/MS and determination of major metabolites by LC–ESI/MS and LC–ESI/MS/MS. J Pharm Biomed Anal 54:535–544

    Article  CAS  PubMed  Google Scholar 

  • Raveendar S, So YS, Lee KJ, Lee DJ, Sung J, Chung JW (2017) The complete chloroplast genome sequence of Glycyrrhiza lepidota (Nutt.) Pursh—an American wild licorice. J Crop Sci Biotechnol 20:295–303

    Article  Google Scholar 

  • Um Y, Jin ML, Lee Y, Hur M, Cha SW, Jung CS, Kim SM, Lee JH (2016) Genetic diversity analysis of Glycyrrhiza uralensis using 8 novel polymorphic microsatellite markers. J Plant Biotechnol 43:174–180

    Article  Google Scholar 

  • Yamazaki M, Sato A, Shimomura K, Saito K, Murakoshi I (1994) Genetic relationships among Glycyrrhiza plants determined by RAPD and RFLP analyses. Biol Pharm Bull 17:1529–1531

    Article  CAS  PubMed  Google Scholar 

  • Yang SO, Hyun SH, Kim SH, Kim HS, Lee JH, Whang WK, Lee MW, Choi HK (2010) Differentiation of roots of Glycyrrhiza species by 1H nuclear magnetic resonance spectroscopy and multivariate statistical analysis. Bull Korean Chem 31:825–828

    Article  CAS  Google Scholar 

  • Yang HQ, Dong YR, Gu ZJ, Liang N, Yang JB (2012) A preliminary assessment of matK, rbcL and trnH—psbA as DNA barcodes for Calamus (Arecaceae) species in China with a note on ITS. Ann Bot Fenn 49:319–330

    Article  Google Scholar 

  • Zhang MY, Fan L, Liu QZ, Song Y, Wei SW, Zhang SL, Wu J (2014) A novel set of EST-derived SSR markers for pear and cross-species transferability in Rosaceae. Plant Mol Biol Rep 32:290–302

    Article  CAS  Google Scholar 

  • Zhao Y, Yin J, Guo H, Zhang Y, Xiao W, Sun C, Wu J, Qu X, Yu J, Wang X et al (2015) The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng. Front Plant Sci 5:696

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

I-HJ and JS participated in the study design, coordinated the experiment, and drafted the manuscript; C-EH, SR, and K-HB performed the experiments; J-WC participated in the study design, collected samples, analyzed genetic diversity, and coordinated the draft of the manuscript. All authors critically read and approved the final manuscript.

Corresponding author

Correspondence to Jong-Wook Chung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, IH., Sung, J., Hong, CE. et al. Development of cleaved amplified polymorphic sequence (CAPS) and high-resolution melting (HRM) markers from the chloroplast genome of Glycyrrhiza species. 3 Biotech 8, 220 (2018). https://doi.org/10.1007/s13205-018-1245-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1245-8

Keywords

Navigation