Skip to main content

Advertisement

Log in

Quinolone-resistant clinical strains of Pseudomonas aeruginosa isolated from University Hospital in Tunisia

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this study, we examined mutations in the quinolone resistance-determining regions (QRDRs) of the gyrA and parC genes of Pseudomonas aeruginosa (P. aeruginosa) clinical isolates collected from patients hospitalized in University Hospital of Monastir, Tunisia. A total of 81 P. aeruginosa strains, obtained from clinical specimens, were included in the present study. Isolates were tested against 11 different antibiotics by a disk diffusion method. Minimum inhibitory concentrations (MICs) of ciprofloxacin were evaluated by E test method. The gyrA and parC sequences genes amplified by polymerase chain reaction (PCR) were sequenced. The highest resistance rates were found for ciprofloxacin (100%), gentamicin (96%) and ticarcillin (93%). The lower resistance rates were obtained for imipenem (74%) and ceftazidime (70%). Notably, 54% of isolates resistant to ciprofloxacin were determined to be multi-drug resistant. The investigation of mutations in the nucleotide sequences of the gyrA and parC genes showed that 77% of isolates have a single mutation in both gyrA (Thr-83 → Ile) and parC (Ser-87 → Leu). The emergence of ciprofloxacin resistance in clinical P. aeruginosa requires the establishment of appropriate antibiotherapy strategies in order to prescribe the most effective antibiotic treatment for preventing the emergence of multi-drug-resistant (MDR) P. aeruginosa strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aeschlimann JR (2003) The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other Gram-negative bacteria Insights from the Society of Infectious Diseases Pharmacists. Pharmaco 23:916–924

    Article  CAS  Google Scholar 

  • Akasaka T, Tanaka M, Yamaguchi A, Sato K (2001) Type II topoisomerase mutations in fluoroquinolone- resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999: role of target enzyme in mechanism of fluoroquinolone resistance. Antimicrob Agents Chemother 45:2263–2268

    Article  CAS  Google Scholar 

  • Alhazmi A (2015) Pseudomonas aeruginosa–pathogenesis and pathogenic mechanisms. Int J Biol 7:44–67

    Article  Google Scholar 

  • Amudhan MS, Sekar U, Kamalanathan A, Balaraman S (2012) blaIMP and blaVIM mediated carbapenem resistance in Pseudomonas and Acinetobacter species in India. J Infect Dev Ctries 6:757–762

    Article  CAS  Google Scholar 

  • Belland RJ, Morrison SG, Ison CA, Huang WM (1994) Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinolone-resistant isolates. Mol Microbiol 14:371–380

    Article  CAS  Google Scholar 

  • Breidenstein EBM, de la Fuente-Núñez C, Hancock REW (2011) Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19:419–426

    Article  CAS  Google Scholar 

  • Comité de l’Antibiogramme de la Société Française de Microbiologie. Communiqué 2014. http://www.sfm.asso.fr

  • De Francesco MA, Ravizzola G, Peroni L, Bonfanti C, Manca N (2013) Prevalence of multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa in an Italian hospital. J Infect Public Health 6:179–185

    Article  Google Scholar 

  • Falagas ME, Bliziotis IA (2007) Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Int J Antimicrob Agents 29:630–636

    Article  CAS  Google Scholar 

  • Falagas ME, Fragoulis KN, Kasiakou SK, Sermaidis GJ, Michalopoulos A (2005) Nephrotoxicity of intravenous colistin: a prospective evaluation. Int J Antimicrob Agents 26:504–507

    Article  CAS  Google Scholar 

  • Fang ZL, Zhang LY, Huang YM, Qing Y, Cao KY, Tian GB, Huang X (2014) OprD mutations and inactivation in imipenem-resistant Pseudomonas aeruginosa isolates from China. Infect Genet Evol 8:124–128

    Article  Google Scholar 

  • Flamm RK, Weaver MK, Thornsberry C, Jones ME, Karlowsky JA (2004) Factors associated with relative rates of antibiotic resistance in Pseudomonas aeruginosa isolates tested in clinical laboratories in the United States from 1999 to 2002. Antimicrob Agents Chemother 48:2431–2436

    Article  CAS  Google Scholar 

  • Hanberger H, Arman D, Gill H, Jindrak V, Kalenic S, Kurcz A, Licker M, Naaber P, Scicluna EA, Vanis V, Walther SM (2009) Surveillance of microbial resistance in European Intensive Care Units: a first report from the Care-ICU programme for improved infection control. Intensive Care Med 35:91–100

    Article  Google Scholar 

  • Hancock REW (1998) Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis 27:93–99

    Article  Google Scholar 

  • Henwood CJ, Livermore DM, James D, Warner M, The Pseudomonas Study Group (2001) Antimicrobial susceptibility of Pseudomonas aeruginosa: results of a UK survey and evaluation of the British Society for antimicrobial chemotherapy disc susceptibility test. J Antimicrob Chemother 47:789–799

    Article  CAS  Google Scholar 

  • Higgins PG, Fluit AC, Milatovic D, Verhoef J, Schmitz FJ (2003) Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents 21:409–413

    Article  CAS  Google Scholar 

  • Hsu DI, Okamoto MP, Murthy R, Wong-Beringer A (2005) Fluoroquinolone-resistant Pseudomonas aeruginosa: risk factors for acquisition and impact on outcomes. J Antimicrob Chemother 55:535–541

    Article  CAS  Google Scholar 

  • Jaffe RI, Lane JD, Bates CW (2001) Real-time identification of Pseudomonas aeruginosa direct from clinical samples using a rapid extraction method and polymerase chain reaction. J Clin Lab Anal 15:131–137

    Article  CAS  Google Scholar 

  • Jalal S, Wretlind B (1998) Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. Microb Drug Resist 4:257–261

    Article  CAS  Google Scholar 

  • Jalal S, CiofuO Hoiby N, Gotoh N, Wretlind B (2000) Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 44:710–712

    Article  CAS  Google Scholar 

  • Johansen HK, Moskowitz SM, Ciofu O, Pressler T, Høiby N (2008) Spread of colistin resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patients. J Cyst Fibros 7:391–397

    Article  Google Scholar 

  • Karlowsky JA, Draghi DC, Jones ME, Thornsberry C, Friedland IR, Sahm DF (2003) Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumanii from hospitalized patients in the United States, 1998–2001. Anitmicrob Agents Chermother 47:1681–1682

    Google Scholar 

  • Le Thomas I, Couetdic G, Clermont O, Brahimi N, Plesiat P, Bingen E (2001) In vivo selection of a target/efflux double mutant of Pseudomonas aeruginosa by ciprofloxacin therapy. J Antimicrob Chemother 48:553–555

    Article  Google Scholar 

  • Lee JY, Ko KS (2012) OprD mutations and inactivation, expression of efflux pumps and AmpC, and metallo-β-lactamases in carbapenem-resistant Pseudomonas aeruginosa isolates from South Korea. Int J Antimicrob Agents 40:168–172

    Article  CAS  Google Scholar 

  • Linder JA, Huang ES, Steinman MA, Gonzales R, Stafford RS (2005) Fluoroquinolone prescribing in the United States: 1995–2002. Am J Med 118:259–268

    Article  Google Scholar 

  • Livermore DM (2002) Multiple mechanism of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 34:634–640

    Article  CAS  Google Scholar 

  • McCracken M, DeCorby M, Fuller J, Loo V, Hoban DJ, Zhanel GG, Mulvey MR (2009) Identification of multi-drug and carbapenem-resistant Acinetobacter baumannii in Canada: results from the CANWARD 2007. J Antimicrob Chemother 64:552–555

    Article  CAS  Google Scholar 

  • Mouneimné H, Robert J, Jarlier V, Cambau E (1999) Type II topoisomerase mutations in ciprofloxacin-resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:62–66

    Google Scholar 

  • Nakano M, Deguchi T, Kawamura T, Yasuda M, Kimura M, Okano Y, Kawada Y (1997) Mutations in the gyrA and parC genes in fluoroquinolone-resistant clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 41:2289–2291

    CAS  Google Scholar 

  • Neuhauser MM, Weinstein RA, Rydman R, Danziger LH, Karam G, Quinn JP (2003) Antibiotic resistance among gram-negative bacilli in US intensive care units: implications for fluoroquinolone use. JAMA 289:885–888

    Article  CAS  Google Scholar 

  • Obritsch MD, Fish DN, MacLaren R, Jung R (2005) Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy 25:1353–1364

    Article  CAS  Google Scholar 

  • Oh H, Stenhoff J, Jalal S, Wretlind B (2003) Role of efflux pumps and mutations in genes for topoisomerase II and IV in fluoroquiniolone-resistant Pseudomonas aeruginosa strains. Microb Drug Resist 9:323–328

    Article  CAS  Google Scholar 

  • Pasca MR, Dalla Valle C, De Jesus Lopes Ribeiro AL, Buroni S, Papaleo MC, Bazzini S, Udine C, Incandela ML, Daffara S, Fani R, Riccardi G, Marone P (2012) Evaluation of fluoroquinolone resistance mechanisms in Pseudomonas aeruginosa multidrug resistance clinical isolates. Microb Drug Resist 18:23–32

    Article  CAS  Google Scholar 

  • Pfaller MA, Jones RN, for the MYSTIC Study Group (2000) MYSTIC (meropenem yearly susceptibility test information collection) results from the Americas: resistance implications in the treatment of serious infections. J Antimicrob Chemother 46:25–37

    Article  CAS  Google Scholar 

  • Rosenthal VD, Bijie H, Maki DG, Mehta Y, Apisarnthanarak A, Medeiros EA, Leblebicioglu H, Fisher D, Álvarez-Moreno C, Khader IA, Del Rocío González Martínez M, Cuellar LE, Navoa-Ng JA, Abouqal R, Guanche Garcell H, Mitrev Z, Pirez García MC, Hamdi A, Dueñas L, Cancel E, Gurskis V, Rasslan O, Ahmed A, Kanj SS, Ugalde OC, Mapp T, Raka L, Yuet Meng C, le Thu TA, Ghazal S, Gikas A, Narváez LP, Mejía N, Hadjieva N, Gamar Elanbya MO, Guzmán Siritt ME, Jayatilleke K, INICC members (2012) International Nosocomial Infection Control Consortium (INICC) report, data summary of countries, for 2004–2009. Am J Infect Control 40:396–407

    Article  Google Scholar 

  • Rossolini GM, Mantengoli E (2005) Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect 4:17–32

    Article  Google Scholar 

  • Sader HS, Farrell DJ, Flamm RK, Jones RN (2014) Antimicrobial susceptibility of Gram-negative organisms isolated from patients hospitalized in intensive care units in United States and European hospitals (2009–2011). Diag Microbiol Infect Dis 78:443–448

    Article  CAS  Google Scholar 

  • Salma R, Dabboussi F, Kassaa I, Khudary R, Hamze M (2013) gyrA and parC mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa from Nini Hospital in north Lebanon. J Infect Chemother 19:77–81

    Article  CAS  Google Scholar 

  • Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551

    Article  CAS  Google Scholar 

  • Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, Kallen A, Limbago B, Fridkin S, National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities (2013) Antimicrobial resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol 34:1–14

    Article  Google Scholar 

  • Thomson CJ (1999) The global epidemiology of resistance to ciprofloxacin and the changing nature of antibiotic resistance: a 10 year perspective. J Antimicrob Chemother 43:31–40

    Article  CAS  Google Scholar 

  • Wolska K, Szweda P (2009) Genetic features of clinical Pseudomonas aeruginosa strains. Pol J Microbiol 58:255–260

    CAS  Google Scholar 

  • Ziha-Zarifi I, Llanes C, Kohler T, Pechere JC, Plesiat P (1999) In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexAMexB-OprM. Antimicrob Agents Chemother 43:287–291

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mouna Ben Nejma proposed the idea of the project and contributed substantially in writing the manuscript. Olfa Sioud collected and identified the strains. Maha Mastouri is the director of laboratory and supervised the work.

Corresponding author

Correspondence to Mouna Ben Nejma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Nejma, M., Sioud, O. & Mastouri, M. Quinolone-resistant clinical strains of Pseudomonas aeruginosa isolated from University Hospital in Tunisia. 3 Biotech 8, 1 (2018). https://doi.org/10.1007/s13205-017-1019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-1019-8

Keywords

Navigation