Skip to main content

Advertisement

Log in

Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Genetic engineering technique offers myriads of applications in improvement of horticultural crops for biotic and abiotic stress tolerance, and produce quality enhancement. During last two decades, a large number of transgenic horticultural crops has been developed and more are underway. A number of genes including natural and synthetic Cry genes, protease inhibitors, trypsin inhibitors and cystatin genes have been used to incorporate insect and nematode resistance. For providing protection against fungal and bacterial diseases, various genes like chitinase, glucanase, osmotin, defensin and pathogenesis-related genes are being transferred to many horticultural crops world over. RNAi technique has been found quite successful in inducing virus resistance in horticultural crops in addition to coat protein genes. Abiotic stresses such as drought, heat and salinity adversely affect production and productivity of horticultural crops and a number of genes encoding for biosynthesis of stress protecting compounds including mannitol, glycine betaine and heat shock proteins have been employed for abiotic stress tolerance besides various transcription factors like DREB1, MAPK, WRKY, etc. Antisense gene and RNAi technologies have revolutionized the pace of improvement of horticultural crops, particularly ornamentals for color modification, increasing shelf-life and reducing post-harvest losses. Precise genome editing tools, particularly CRISPR/Cas9, have been efficiently applied in tomato, petunia, citrus, grape, potato and apple for gene mutation, repression, activation and epigenome editing. This review provides comprehensive overview to draw the attention of researchers for better understanding of genetic engineering advancements in imparting biotic and abiotic stress tolerance as well as on improving various traits related to quality, texture, plant architecture modification, increasing shelf-life, etc. in different horticultural crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    Article  CAS  Google Scholar 

  • Aida R, Komano M, Saito M, Nakase K, Murai K (2008) Chrysanthemum flower shape modification by suppression of chrysanthemum-AGAMOUS gene. Plant Biotechnol 25:55–59

    Article  CAS  Google Scholar 

  • Akama K, Puchta H, Hohn B (1995) Efficient Agrobacterium-mediated transformation of Arabidopsis thaliana using the bar gene as selectable marker. Plant Cell Rep 14:450–454

    Article  CAS  Google Scholar 

  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-ediated viral interference in plants. Genome Biol 16:238

    Article  CAS  Google Scholar 

  • Araki H, Jearnpipatkula A, Tatsumi H, Sakurai T, Ushino K, Muta T (1987) Molecular and functional organization of yeast plasmid pSR1. J Mol Biol 182:191–203

    Article  Google Scholar 

  • Asao H, Nishizawa Y, Arai S, Sato T, Hirai M, Yoshida K, Shinmyo A, Hibi T (1997) Enhanced resistance against a fungal pathogen Sphaerotheca humuli in transgenic strawberry expressing a rice chitinase gene. Plant Biotechnol 14:145–149

    Article  CAS  Google Scholar 

  • Aslam J, Khan SA, Azad MAK (2015) Agrobacterium-mediated genetic transformation of datepalm (Phoenix dactylifera L.) cultivar “Khalasah” via somatic embryogenesis. Plant Sci Today 2:93–101

    Article  Google Scholar 

  • Atkinson HJ, Grimwood S, Johnston K, Green J (2004) Prototype demonstration of transgenic resistance to the nematode Radopholus similis conferred on banana by a cystatin. Transgenic Res 13:135–142

    Article  CAS  Google Scholar 

  • Azadi P, Otang NV, Supaporn H, Khan RS, Chin DP, Nakamura I, Mii M (2011) Increased resistance to cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicase gene. Biotechnol Lett 33:1249–1255

    Article  CAS  Google Scholar 

  • Ballester R, Cervera M, Pena L (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep 26:39–45

    Article  CAS  Google Scholar 

  • Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF (2015) Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat Plants. doi:10.1038/nplants.2015.145

    Google Scholar 

  • Baranski R, Klocke E, Nothnagel T (2008) Chitinase CHIT36 from Trichoderma harzianum enhances resistance of transgenic carrot to fungal pathogens. J Phytopathol 156:13–521

    Article  CAS  Google Scholar 

  • Barry GF, Rogers SG, Fraley RT, Brand L (1984) Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci USA 81:4776–4780

    Article  CAS  Google Scholar 

  • Behboodian B, Ali ZM, Ismail I, Zainal Z (2012) Postharvest analysis of lowland transgenic tomato fruits harboring hpRNAi-ACO1 construct. Sci World J 1:1–17

    Article  CAS  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39

    Article  CAS  Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1983) A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    Article  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    Article  CAS  Google Scholar 

  • Bojorquez-Quintal E, Velarde-Buendıa A, Ku-Gonzalez A, Carillo-Pech M, Ortega-Camacho D, Echevarrıa-Machado I, Pottosin I, Martínez-Estévez M (2014) Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation. Front Plant Sci 5:10–3389

    Google Scholar 

  • Bolar JP, Norelli JL, Harman GE, Brown SK, Aldwinkle HS (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res 10:533–543

    Article  CAS  Google Scholar 

  • Borkowoska M, Krzymowska M, Talarczyk A, Awan MF, Yakovleva L, Kleczkowski K, Wielgat V (1998) Transgenic potato plants expressing soybean beta-1,3-endoglucanase gene exhibit an increased resistance to Phytophthora infestans. Z Naturforsch 53:1012–1016

    Google Scholar 

  • Borth W, Perez E, Cheah K, Chen Y, Xie WS, Gaskill D, Khalil S, Sether D, Melzer M, Wang M, Manshardt R, Gonsalves D, Hu JS (2011) Transgenic banana plants resistant to banana bunchy top virus infection. Acta Hortic. doi:10.17660/ActaHortic.2011.897.61

    Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Post-transcriptional control of gene expression in plants. Springer, Dordrecht, pp 191–222

    Google Scholar 

  • Bovy AG, Angenent GC, Dons HJM, Van-Atvorst AG (1999) Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers. Mol Breed 5:301–308

    Article  CAS  Google Scholar 

  • Bulle M, Yarra R, Abbagani S (2016) Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene. Mol Breed 36:36

    Article  CAS  Google Scholar 

  • Cardi T, Stewart CN Jr (2016) Progress of targeted genome modification approaches in higher plants. Plant Cell Rep 35:1401–1416

    Article  CAS  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2012) Genetic engineering of crop plants for fungal resistance: role of antifungal genes. Biotechnol Lett 34:995–1002

    Article  CAS  Google Scholar 

  • Cervera M, Ortega C, Navarro A, Navarro L, Pena L (2000) Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast. J Hortic Sci Biotechnol 75:26–30

    Article  CAS  Google Scholar 

  • Chaitanya KV, Sundar D, Masilamani S, Reddy AR (2002) Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regul 36:175–180

    Article  CAS  Google Scholar 

  • Chakrabarty R, Viswakarma N, Bhat SR, Kirti PB, Singh BD, Chopra VL (2002) Agrobacterium-mediated transformation of cauliflower, optimization of protocol and development of Bt-transgenic cauliflower. J Biosci 27:495–502

    Article  CAS  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-on A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153

    Article  CAS  Google Scholar 

  • Checker VG, Chhibbar AK, Khurana P (2012) Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res 21:939–957

    Article  CAS  Google Scholar 

  • Chen XK, Zhang JY, Zhang Z, Du XL, Du BB, Qu SC (2012) Overexpressing MhNPR1 in transgenic Fuji apples enhances resistance to apple powdery mildew. Mol Biol Rep 39:8083–8089

    Article  CAS  Google Scholar 

  • Chen JR, Chen YB, Ziemiańska M, Liu R, Deng ZN, Niedźwiecka-Filipiak I, Li YL, Jio JX, Xiong XY (2016) Co-expression of MtDREB1C and RcXET enhances stress tolerance of transgenic China rose (Rosa chinensis Jacq.). Plant Growth Regul 35:586–599

    Article  CAS  Google Scholar 

  • Cheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integ Plant Biol 51:489–499

    Article  CAS  Google Scholar 

  • Cheng YJ, Deng XP, Kwak SS, Chen W, Eneji AE (2013) Enhanced tolerance of transgenic potato plants expressing choline oxidase in chloroplasts against water stress. Bot Stud 54:30

    Article  CAS  Google Scholar 

  • Cheng S, Xie X, Xu Y, Zhang C, Wang X, Zhang J, Wang U (2016) Genetic transformation of a fruit-specific, highly expressed stilbene synthase gene from Chinese wild Vitis quinquangularis. Planta 243:1041–1053

    Article  CAS  Google Scholar 

  • Clark DG, Loucas H, Shibuya K, Underwood B, Barry K, Jandrew J (2003) Biotechnology of floricultural crops-scientific questions and real world answers. In: Vasil IK (ed) Plant biotechnology 2002 and beyond. Kluwer Academic, Dordrecht, pp 337–342

    Chapter  Google Scholar 

  • Clarke JL, Spetz C, Haugslien S, Xing S, Dees MW, Moe R, Blystad DR (2008) Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus. Plant Cell Rep 27:1027–1038

    Article  CAS  Google Scholar 

  • Collinge DB, Jorgensen HJ, Lund OS, Lyngkjaer MF (2010) Engineering pathogen resistance in crop plants: current trends and future prospects. Annu Rev Phytopathol 48:269–291

    Article  CAS  Google Scholar 

  • Dale EC, David OW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:558–562

    Article  Google Scholar 

  • Das DK, Rahman A (2010) Expression of a bacterial chitinase (ChiB) gene enhances antifungal potential in transgenic Litchi chinensis Sonn. (cv. Bedana). Curr Trends Biotechnol Pharm 41:820–833

    Google Scholar 

  • Das M, Chauhan H, Chhibbar A, Mohd Q, Haq R, Khurana P (2011) High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, by constitutive and inducible expression of tobacco osmotin. Transgenic Res 20:231–246

    Article  CAS  Google Scholar 

  • Das MP, Rebecca LJ, Sharmila S, Banerjee A, Kumar D (2012) Identification and optimization of cultural conditions for chitinase production of Bacillus amyloliqufaciens SM3. J Chem Pharma Res 4:969–4974

    Google Scholar 

  • Davuluri GR, Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895

    Article  CAS  Google Scholar 

  • De Campos MKF, Carvalho K, Souza FS, Marur CJ, Pereira LFP, Bespalhok FJC, Vieira LGE (2011) Drought tolerance and antioxidant enzymatic activity in transgenic Swingle citrumelo plants over-accumulating proline. Environ Exp Bot 72:242–250

    Article  CAS  Google Scholar 

  • De Carvalho K, de Campos MKF, Domingues DS, Pereira LFP, Vieira LGE (2013) The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol Biol Rep. doi:10.1007/s11033-012-2402-5

    Google Scholar 

  • De Vetten N, Wolters AM, Raemakers K, Van Der Meer I, Stege R, Heeres EA (2003) Transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442

    Article  CAS  Google Scholar 

  • Degenhardt J, Szankowski I (2006) Transformation of apple (Malus domestica Borkh.) using the phosphomannose isomerase gene as a selectable marker. Acta Hortic 725:811–814

    Article  CAS  Google Scholar 

  • Degenhardt J, Poppe A, Rosner L (2007) Alternative selection systems in apple transformation. Acta Hortic 738:287–292

    Article  CAS  Google Scholar 

  • Dhekney SA, Li ZT, Gray DJ (2011) Grapevines engineered to express cisgenic Vitis vinifera thaumatin-like protein exhibit fungal disease resistance. In Vitro Cell Dev Biol Plant 47:458–466

    Article  CAS  Google Scholar 

  • Ding LC, Hu CY, Yeh KW, Wang PJ (1998) Development of insect-resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Rep 17:854–860

    Article  CAS  Google Scholar 

  • Distefano G, LaMalfa S, Vitale A, Lorito M, Deng Z, Gentile A (2008) Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection. Transgenic Res 17:873–879

    Article  CAS  Google Scholar 

  • Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H, Lin H (2009) Complete genome sequence of citrus huanglongbing bacterium, ‘Candidatus Liberibacter asiaticus’ obtained through metagenomics. Mol Plant Microbe Interact 22:1011–1020

    Article  CAS  Google Scholar 

  • Dutt M, Barthe G, Irey M, Grosser J (2015) Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; Citrus greening). PLoS One 10:e0137134

    Article  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene as a selectable marker. Proc Natl Acad Sci USA 94:2117–2121

    Article  CAS  Google Scholar 

  • Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci USA 98:13437–13442

    Article  CAS  Google Scholar 

  • Fagoaga C, Rodrigo I, Conejero V, Hinarejos C, Tuset JJ, Arnau J, Pina JA, Navarro L, Pena L (2001) Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5. Mol Breed 7:175–185

    Article  CAS  Google Scholar 

  • Fan W, Zhang M, Zhang H, Zhang P (2012) Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One 7:e37344

    Article  CAS  Google Scholar 

  • Fan Q, Song A, Jiang Zhang T, Sun H, Wang Y (2016) CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes. PLoS One 11:e0150572

    Article  CAS  Google Scholar 

  • Finstad K, Martin RR (1995) Transformation of strawberry for virus resistance. Acta Hortic 385:6–90

    Google Scholar 

  • Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG, Dean DA, Kusano-Kretzmer K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT (1987) Insect tolerant tomato plants. BioTechnol 5:807–813

    CAS  Google Scholar 

  • Flachowsky H, Szankowski I, Fischer TC (2010) Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight. Planta 231:623–635

    Article  CAS  Google Scholar 

  • Galambos A, Zok A, Kuczmog A, Olah R, Putnoky P, Ream W, Szegedi E (2013) Silencing Agrobacterium oncogenes in transgenic grapevine results in strain-specific crown gall resistance. Plant Cell Rep 32:1751–1757

    Article  CAS  Google Scholar 

  • Gangadhar BH, Sajeesh K, Venkatesh J, Baskar V, Abhinandan K, Yu JW, Prasad R, Mishra RK (2016) Enhanced tolerance of transgenic potato plants over-expressing non-specific lipid transfer protein-1 (StnsLTP1) against multiple abiotic stresses. Front Plant Sci 7:1228

    Article  Google Scholar 

  • Gao H, Song A, Zhu X, Chen F, Jiang J (2012) The heterologous expression in Arabidopsis of a highly tolerant to a new CMV pathotype. Plant Cell Rep 28:223–232

    Google Scholar 

  • Gessler C, Patocchi A (2007) Recombinant DNA technology in apple. Adv Biochem Engin/Biotechnol 107:13–132

    Article  Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2012) Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS One 7:39557

    Article  CAS  Google Scholar 

  • Girhepuje PV, Shinde GV (2011) Transgenic tomato plants expressing a wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f. sp. Lycopersici. Plant Cell Tiss Organ Cult 105:243–251

    Article  CAS  Google Scholar 

  • Gleave AP, Mitra DS, Mudge SR, Morris BA (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol 40:223–235

    Article  CAS  Google Scholar 

  • Graham J, Gordon SC, Smith K, McNcol RJ, McNcol JW (2002) The effect of the cowpea trypsin inhibitor in strawberry on damage by vine weevil under field conditions. J Hortic Sci Biotechnol 77:33–40

    Article  CAS  Google Scholar 

  • Han BH, Suh EJ, Lee SY, Shin HK, Lim YP (2007) Selection of nonbranching lines induced by introducing Ls-like cDNA into Chrysanthemum (Dendranthema × grandiflorum (Ramat.) Kitamura) Shuho-no-chikara. Sci Hortic 115:70–75

    Article  CAS  Google Scholar 

  • Han JS, Park LI, Jeon SM, Park S, Naing AH, Kim CK (2015) Assessments of salt tolerance in a bottle gourd line expressing the Arabidopsis H+-pyrophosphatase AVP1 gene and in a watermelon plant grafted onto a transgenic bottle gourd rootstock. Plant Breed 134:233–238

    Article  CAS  Google Scholar 

  • Hare PD, Chua NH (2002) Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20:575–580

    Article  CAS  Google Scholar 

  • Hazarika P, Rajam MV (2011) Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene. Physiol Mol Biol Plants 17:115–128

    Article  CAS  Google Scholar 

  • He H, Ke H, Keting H, Qiaoyan X, Silan D (2013) Flower colour modification of chrysanthemum by suppression of F3′H and overexpression of the exogenous Senecio cruentus F3′5′H gene. PLoS One 8(11):e74395

    Article  CAS  Google Scholar 

  • Holton TA, Brugliera F, Tanaka Y (1993) Cloning and expression of flavonol synthase from Petunia hybrida. Plant J 4:1003–1010

    Article  CAS  Google Scholar 

  • Husaini AM, Abdin MZ (2008) Overexpression of tobacco osmotin gene leads to salt stress tolerance in strawberry (Fragaria × ananassa Duch.) plants. Indian J Biotech 7:465–471

    CAS  Google Scholar 

  • ISAAA (2017). http://www.isaaa.org. Accessed 25 May 2017

  • Islam A (2006) Fungus resistant transgenic plants: strategies, progress and lessons learnt. Plant Tiss Cult Biotechnol 16:117–138

    Google Scholar 

  • James C, Krattiger AF (1996) Global review of the field testing and commercialization of transgenic plants: 1986 to 1995. ISAAA, Briefs, p 1

    Google Scholar 

  • Jiang B, Miao H, Chen S, Zhang S, Chen F, Fang W (2010) The lateral suppressor-like gene, DgLsL, alternated the axillary branching in transgenic chrysanthemum (Chrysanthemum × morifolium) by modulating IAA and GA content. Plant Mol Biol Rep 28:144–151

    Article  CAS  Google Scholar 

  • Jin WM, Dong J, Hu YL, Lin ZP, Xu XF, Han ZH (2009) Improved cold-resistant performance in transgenic grape (Vitis vinifera L.) overexpressing cold-inducible transcription factors AtDREB1b. Hortic Sci 44:35–39

    Google Scholar 

  • Jiwan D, Roalson EH, Main D, Dhingra A (2012) Antisense expression of peach mildew resistance locus O (PpMlo1) gene confers cross-species resistance to powdery mildew in Fragaria × ananassa. Transgenic Res 22:1119–1131

    Article  CAS  Google Scholar 

  • Jones HD (2015) Regulatory uncertainty over genome editing. Nat. Plants. doi:10.1038/nplants.2014.11

    Google Scholar 

  • Joshi SG, Soriano JM, Kortstee A (2009) Development of cisgenic apples with durable resistance to apple scab. Acta Hortic 839:403–406

    Article  CAS  Google Scholar 

  • Josine T, Ji J, Wang G, Zhao Q, Yang HL, Wang YR, Wu WD (2015) AtDREB2A-CA gene over-expression in Rosa Chinensis Jacq. affect leaf ultrastructure response to salt stress. Int J Agri Crop Sci 8:463–476

    CAS  Google Scholar 

  • Kathryn KK, Han BH (2008) Biolistic-mediated transformation of Lilium longiflorum cv. Nellie White. Hortic Sci 43(6):1864–1869

    Google Scholar 

  • Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600

    Article  CAS  Google Scholar 

  • Kaur P, Samuel DVK, Bansal KC (2010) Fruit-specific over-expression of LeEXP1 gene in tomato alters fruit texture. J Plant Biochem Biotechnol 19(2):177–183

    Article  Google Scholar 

  • Keen NT, Yoshikawa M (1993) β-1,3-endoglucanase from soybean releases elicitor-active carbohydrates from fungus cell walls. Plant Physiol 71:460–465

    Article  Google Scholar 

  • Khan RS, Sjahril R, Nakamura I, Mii M (2008) Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications. Plant Biotechnol Rep 2:13–20

    Article  Google Scholar 

  • Khan RS, Nakamura I, Mii M (2010) Production and selection of marker-free transgenic plants of Petunia hybrida using site specific recombination. Biol Plant 54:265–271

    Article  CAS  Google Scholar 

  • Khan H, Siddique I, Anis M, Khan PR (2011a) In vitro organogenesis from internode derived callus cultures of Capsicum annuum L. J Plant Biochem Biotechnol 20:84–89

    Article  Google Scholar 

  • Khan RS, Nakamura I, Mii M (2011b) Development of disease-resistant marker-free tomato by R/RS site-specific recombination. Plant Cell Rep 30:1041–1053

    Article  CAS  Google Scholar 

  • Khare N, Goyary D, Singh NK, Shah P, Rathore M, Anandhan S (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tiss Organ Cult 2:267–277

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Vankova R, Malbeck J, Li A, Li Y, McAvoy R (2009) Enhancement of flowering and branching phenotype in chrysanthemum by expression of ipt under the control of a 0.821 kb fragment of the LEACO1 gene promoter. Plant Cell Rep 28:1351–1362

    Article  CAS  Google Scholar 

  • Khurana P, Vishnudasan D, Chhibbar AK (2008) Genetic approaches towards overcoming water deficit in plants special emphasis on LEAs. Physiol Mol Biol Plants 14:277–298

    Article  CAS  Google Scholar 

  • Kishi-Kaboshi M, Aida R, Sasaki K (2017) Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant Cell Physiol 58(2):216–226

    Google Scholar 

  • Ko M, Cho JH, Seo HH, Lee HH, Kang HY, Nguyen TS (2016) Constitutive expression of a fungus-inducible carboxylesterase improves disease resistance in transgenic pepper plants. Planta 244:379–392

    Article  CAS  Google Scholar 

  • Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N (2010) Chilli peppers—a review on tissue culture and transgenesis. Biotechnol Adv 28:35–48

    Article  CAS  Google Scholar 

  • Kumar P, Srivastava DK (2015) High frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Physiol Mol Biol Plants 21(2):279–285

    Article  CAS  Google Scholar 

  • Kumar PA, Mandaokar A, Sreenivasu K, Chakrabarti SK, Bisaria S, Sharma SR (1998) Insect-resistant transgenic brinjal plants. Mol Breed 4:3–37

    Article  Google Scholar 

  • Le HG, Farine S, Kieffer-Mazet F, Miclot AS, Heitz T, Mestre P, Bertsch C, Chong J (2011) Vitis vinifera VvNPR1,1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Planta 234(2):405–417

    Article  CAS  Google Scholar 

  • Lee YH, Jung M, Shin SH, Lee JH, Choi SH, Her NH (2009) Transgenic peppers that are highly tolerant to a new CMV pathotype. Plant Cell Rep 28:223–232

    Article  CAS  Google Scholar 

  • Li Y, Zhang Y, Feng F, Liang D, Cheng L, Ma F, Shi S (2010) Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M26 and its influence on salt tolerance. Plant Cell Tiss Organ Cult 102:337–345

    Article  CAS  Google Scholar 

  • Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  Google Scholar 

  • Li P, Song A, Gao C, Jiang J, Chen S, Fang W (2015) The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance. Plant Physiol Biochem 95:26–34

    Article  CAS  Google Scholar 

  • Lilley CJ, Urwin PE, Johnston KA, Atkinson HJ (2004) Preferential expression of a plant cystatin at nematode feeding sites confers resistance to Meloidogyne and Globodera spp. Plant Biotechnol J 2:3–12

    Article  CAS  Google Scholar 

  • Lim MY, Jeong BR, Jung M, Harn CH (2016) Transgenic tomato plants expressing strawberry D-galacturonic acid reductase gene display enhanced tolerance to abiotic stresses. Plant Biotechnol Rep 10:105–116

    Article  Google Scholar 

  • Lin WC, Lu CF, Wu JW, Cheng ML, Lin YM, Yang NS (2004) Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res 13:67–581

    Article  Google Scholar 

  • Lindow S, Newman K, Chatterjee S, Baccari C, Lavarone AT, Ionescu M (2014) Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of pierce’s disease. Mol Plant Microbe Interact 27:244–254

    Article  CAS  Google Scholar 

  • Lorito M, Woo SL, Fernandez IG, Colucci G, Harman GE, Pintor-Toro JA, Filipone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:7860–7865

    Article  CAS  Google Scholar 

  • Lu CY, Chandler SF, Mason JG, Brugliera F (2003) Florigene flowers: from laboratory to market. In: Vasil IK (ed) Plant biotechnology 2002 and beyond. Kluwer Academic, Dordrecht, pp 333–336

    Chapter  Google Scholar 

  • Lurquin P (2002) High tech harvest: understanding genetically modified food plants. Westview, Cambridge

    Google Scholar 

  • Malnoy M, Aldwinckle HS (2007) Development of fire blight resistance by recombinant DNA technology. Plant Breed Rev 29:315–358

    Article  CAS  Google Scholar 

  • Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus × domestica. Mol Plant Microbe Interact 20:1568–1580

    Article  CAS  Google Scholar 

  • Malnoy M, Xu M, Borejsza-Wysocka E, Korban SS, Aldwinckle HS (2008) Two receptor like genes, Vf1 and Vf2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol Plant Microbe Interact 21:448–458

    Article  CAS  Google Scholar 

  • Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Nagamangala KC (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904

    Article  Google Scholar 

  • Markwick NP, Docherty LC, Phung MM (2003) Transgenic tobacco and apple plants expressing biotin-binding proteins are resistant to two cosmopolitan insect pests, potato tuber moth and light brown apple moth, respectively. Transgenic Res 12:671–681

    Article  CAS  Google Scholar 

  • Martinelli A, Gaiani A, Cella R (1997) Agrobacterium-mediated transformation of strawberry cultivar Marmolada onebar. Acta Hortic 439:169–173

    Article  CAS  Google Scholar 

  • Mercado JA, Martín-Pizarro C, Pascual L, Quesada MA, Pliego-Alfaro F, de los Santos B, Romero F, Gálvez J, Rey M, de la Vin˜a G, Llobell A, Yubero-Serrano E-M, Mun˜oz-Blanco J, Caballero JL (2007) Evaluation of tolerance to Colletotrichum acutatum in strawberry plants transformed with Trichoderma-derived genes. Acta Hortic 738:383–388

    Article  CAS  Google Scholar 

  • Mercado JA, Barcelo M, Pliego C, Rey M, Caballero JL, Munoz-Blanco J, Ruano-Rosa D, Lopez-Herrera C, Santos B, Romero-Munoz F, Pliego-Alfaro F (2015) Expression of the β-1,3-glucanase gene bgn13,1 from Trichoderma harzianum in strawberry increases tolerance to crown rot diseases but interferes with plant growth. Transgenic Res 24:979–989

    Article  CAS  Google Scholar 

  • Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330:677–678

    Article  CAS  Google Scholar 

  • Minlong C, Takayanagi K, Kamada H, Nishimura S, Handa T (2000) Transformation of Antirrhinum majus L. by a rol-type multi-auto-transformation (MAT) vector system. Plant Sci 159:273–280

    Article  CAS  Google Scholar 

  • Mishra M, Jalil SU, Mishra RK, Kumari S, Pandey BK (2016) In vitro screening of guava plantlets transformed with endochitinase gene against Fusarium oxysporum f. sp. psidii. Czech J Genet Plant Breed 52:6–13

    Article  Google Scholar 

  • Missiou A, Kalantidis K, Boutla A, Tzortzakaki S, Tabler M, Tsagris M (2004) Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Mol Breeding 14:185–197

    Article  CAS  Google Scholar 

  • Mondal SN, Dutt M, Grosser JW, Dewdney MM (2012) Transgenic citrus expressing the antimicrobial gene Attacin E (attE) reduces the susceptibility of ‘Duncan’ grapefruit to the citrus scab caused by Elsinoe fawcettii. Eur J Plant Pathol 133:391–404

    Article  CAS  Google Scholar 

  • Mora AA, Earle ED (2001) Resistance to Alternaria brassicicola in transgenic broccoli expressing Trichoderma harzianum endochitinase gene. Mol Breed 8:1–9

    Article  CAS  Google Scholar 

  • Moravcikova J, Matusikova I, Libantova J, Bauer M, Mlynarova L (2004) Expression of a cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase genes in transgenic potato plants. Plant Cell Tiss Organ Cult 79:161–168

    Article  CAS  Google Scholar 

  • Naing AH, Ai TN, Jeon SM, Lim SH, Kim CK (2016) An efficient protocol for Agrobacterium-mediated genetic transformation of recalcitrant chrysanthemum cultivar Shinma. Acta Physiol Plant 38:38

    Article  CAS  Google Scholar 

  • Najar AG, Anwar A, Masoodi L, Khar MS (2011) Evaluation of native biocontrol agents against Fusarium solani f. sp. melongenae causing wilt disease of brinjal in Kashmir. J Phytol 3:31–34

    CAS  Google Scholar 

  • Nakamura Y, Sawada H, Kobayashi S, Nakajima I, Yoshikawa M (1999) Expression of soybean β-1,3-glucanase cDNA and effect on disease tolerance in kiwifruit plants. Plant Cell Rep 18:527–532

    Article  CAS  Google Scholar 

  • Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK (2010) Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Plant J 63:836–847

    Article  CAS  Google Scholar 

  • Namukwaya B, Tripathi L, Tripathi JN, Arinaitwe G, Mukasa SB, Tushemereirwe WK (2012) Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease. Transgenic Res 21:855–865

    Article  CAS  Google Scholar 

  • Narendran M, Deole SG, Harkude S, Shirale D, Nanote A, Bihani P, Parimi S, Char BR, Zehr UB (2013) Efficient genetic transformation of okra (Abelmoschus esculentus (L.) Moench) and generation of insect-resistant transgenic plants expressing the cry1Ac gene. Plant Cell Rep 32:1191–1198

    Article  CAS  Google Scholar 

  • Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K et al (2016) Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 6:31481

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol 49:249–279

    Article  CAS  Google Scholar 

  • Pandolfini T, Molesini B, Avesani L, Spena A, Polverari A (2003) Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection. BMC Biotech 3:7

    Article  Google Scholar 

  • Papolu PK, Dutta TK, Tyagi N, Urwin PE, Lilley CJ, Rao U (2016) Expression of a cystatin transgene in eggplant provides resistance to root-knot nematode, Meloidogyne incognita. Front Plant Sci 7:1122

    Article  Google Scholar 

  • Park S, Cheng NH, Pittman JK, Yoo KS, Park J, Smith RH (2005) Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+. Plant Physiol 139:1194–1206

    Article  CAS  Google Scholar 

  • Parmar N, Kamlesh K, Thakur AK (2012) In vitro organogenesis from cotyledon derived callus cultures of Punica granatum L. cv. Kandhari Kabuli. Natl Acad Sci Lett 35:215–220

    Article  Google Scholar 

  • Parmar N, Kanwar K, Thakur AK (2013) High efficiency plant regeneration via direct organogenesis in Punica granatum L. cv. Kandhari Kabuli from hypocotyl explants. Proc Natl Acad Sci India Sect-B Biol Sci 83:569–574

    Article  Google Scholar 

  • Parmar N, Kanwar K, Thakur AK (2015) High efficiency plant regeneration from cotyledon explants of pomegranate (Punica granatum L.) cv. Kandhari Kabuli. Vegetos 28:160–165

    Google Scholar 

  • Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M (2008) Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27:1677–1686

    Article  CAS  Google Scholar 

  • Paul A, Sharma SR, Sresty TVS, Devi S, Bala S, Kumar PS, Saradhi PP, Frutos R, Altosaar I, Kumar PA (2005) Transgenic cabbage (Brassica oleracea var. capitata) resistant to Diamondback moth (Plutella xylostella). Indian J Biotech 4:72–77

    CAS  Google Scholar 

  • Pessina S, Lenzi L, Perazzolli M, Campa M, DallaCosta L, Urso S, Vale G, Salamini F, Velasco R, Malnoy M (2016) Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Hortic Res 3:16016

    Article  CAS  Google Scholar 

  • Petty LM, Harberd NP, Carre IA, Thomas B, Jackson SD (2003) Expression of the Arabidopsis gai gene under its own promoter causes a reduction in plant height in chrysanthemum by attenuation of the gibberellin response. Plant Sci 164:75–182

    Article  Google Scholar 

  • Praveen S, Ramesh SV, Mishra AK, Koundal V, Palukaitis P (2010) Silencing potential of viral derived RNAi constructs in tomato leaf curl virus-AC4 gene suppression in tomato. Transgenic Res 19:45–55

    Article  CAS  Google Scholar 

  • Puchta H (2000) Removing selectable marker genes: taking the shortcut. Trends Plant Sci 5:273–274

    Article  CAS  Google Scholar 

  • Punja ZK, Raharjo V (1996) Response of transgenic cucumber and carrot plants expressing different chitinase enzymes to inoculation with pathogens. Plant Dis 80:999–1005

    Article  CAS  Google Scholar 

  • Qu SC, Dong L, Zhang Z (2009) Research advances of resistant genes in apple. J Agric Sci Technol 11:36–41

    Google Scholar 

  • Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011) Developing stress tolerant plants through in vitro selection—an overview of the recent progress. Environ Exp Bot 71:89–98

    Article  Google Scholar 

  • Ren C, Liu X, Zhang Z, Wang Y, Duan W, Li S, Liang Z (2016) CRISPR/Cas9—mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6:32289

    Article  CAS  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  Google Scholar 

  • Rivera-Dominguez M, Astorga-Cienfuegos KR, Vallejo-Cohen S, Vargas-Arispuro I, Sanchez- Sanchez E (2011) Transgenic mango embryos (Mangifera indica) cv. ‘Ataulfo’ with the defensin J1 gene. Revista Mexicana de Fitopathol 29:78–80

    Google Scholar 

  • Robson PRH, McCormac AC, Irvine AS, Smith H (1996) Genetic engineering of harvest index in tobacco through overexpression of a phytochrome gene. Nat Biotechnol 14:995–998

    Article  CAS  Google Scholar 

  • Roderick H, Tripathi L, Babirye A, Wang D, Tripathi J, Urwin PE (2012) Generation of transgenic plantain (Musa spp.) with resistance to plant pathogenic nematodes. Mol Plant Pathol 13:842–851

    Article  CAS  Google Scholar 

  • Rustaee M, Nazeri S, Ghadimzadeh M, Malboobi MA (2007) Optimizing in vitro regeneration from Iranian native dwarf rootstock of apple (Malus domestica Borkh). Int J Agric Biol 9:775–778

    CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    Article  CAS  Google Scholar 

  • Sajeevan RS, Nataraja KN, Shivashankara KS, Pallavi N, Gurumurthy DS, Shivanna MB (2017) Expression of Arabidopsis SHN1 in Indian mulberry (Morus indica L.) increases leaf surface wax content and reduces post-harvest water loss. Front Plant Sci 8:418

    Article  CAS  Google Scholar 

  • Savin KW, Baudinette SC, Graham MW, Michael MZ, Nugent GD, Lu C, Chandler SF, Cornish EC (1995) Antisense ACC oxidase RNA delays carnation petal senescence. Hortic Sci 30:970–972

    CAS  Google Scholar 

  • Schestibratov KA, Dolgov SV (2005) Transgenic strawberry plants expressing a thaumatin II gene demonstrate enhanced resistance to Botrytis cinerea. Sci Hortic 106:177–189

    Article  CAS  Google Scholar 

  • Shah DM, Horsch RB, Klee HJ, Kishore G, Winter JA, Tumer NE, Hironaka CM, Sanders PR, Gasser CS, Aykent S, Siegel NR, Rogers SG, Fraley RT (1986) Engineering herbicide tolerance in transgenic plants. Science 233:478–481

    Article  CAS  Google Scholar 

  • Sharma S, Thakur AK, Srivastava DK (2006) Plant regeneration and Agrobacterium-mediated gene transfer in Bell pepper (Capsicum annuum L.). Crop Improv 33:1–8

    Google Scholar 

  • Shekhawat UKS, Ganapathi TR (2013) MusaWRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses. PLoS One 8:e75506

    Article  CAS  Google Scholar 

  • Shekhawat UKS, Ganapathi TR, Srinivas L (2011) MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta 234:915–932

    Article  CAS  Google Scholar 

  • Shekhawat UKS, Ganapathi TR, Hadapad AB (2012) Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection. J Gen Virol 93:1804–1813

    Article  CAS  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  CAS  Google Scholar 

  • Shin R, Park JM, An JM, Paek KH (2002) Ectopic expression of Tsi1 in transgenic hot pepper plants enhances host resistance to viral, bacterial and oomycete pathogens. Mol Plant Microb Interact 15:983–989

    Article  CAS  Google Scholar 

  • Shingles J, Lilley CJ, Atkinson HJ, Urwin PE (2007) Meloidogyne incognita: molecular and biochemical characterization of acathepsin L cysteine proteinase and the effect on parasitism following RNAi. Exp Parasitol 115:114–120

    Article  CAS  Google Scholar 

  • Singh S, Rajam MV (2010) Highly efficient and rapid plant regeneration in Citrus sinensis. J Plant Biochem Biotechnol 19:195–202

    Article  Google Scholar 

  • Singh D, Ambroise A, Haicour R, Sihachakr D, Rajam MV (2014) Increased resistance to fungal wilts in transgenic eggplant expressing alfalfa glucanase gene. Physiol Mol Biol Plants 20:143–150

    Article  CAS  Google Scholar 

  • Smith CJS, Watson CF, Ray J, Bird CR, Morris PC, Schuch W, Grierson D (1988) Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334:724–726

    Article  CAS  Google Scholar 

  • Song A, Zhu X, Chen F, Gao H, Jiang J, Chen S (2014) A chrysanthemum heat shock protein confers tolerance to abiotic stress. Int J Mol Sci 15:5063–5078

    Article  CAS  Google Scholar 

  • Song G, Jia M, Chen K, Kong X, Khattak B, Xie C, Li A, Mao L (2016) CRISPR/Cas9: a powerful tool for crop genome editing. Crop J 4:75–82

    Article  Google Scholar 

  • Sreedharan S, Shekhawat UKS, Ganapathi TR (2012) MusaSAP1, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses. Plant Mol Biol 80:503–517

    Article  CAS  Google Scholar 

  • Sripaoraya S, Keawsompong S, Insupa P, Power JB, Davey MR, Srinives P (2006) Genetically manipulated pineapple: transgene stability, gene expression and herbicide tolerance under field conditions. Plant Breed 125:411–413

    Article  CAS  Google Scholar 

  • Stewart RJ, Sawyer BJB, Bucheli CS, Robinson SP (2001) Polyphenol oxidase is induced by chilling and wounding in pineapple. Aus J Plant Physiol 28:181–191

    CAS  Google Scholar 

  • Subramanyam K, Sailaja KV, Subramanyam K, Rao DM, Lakshmidevi K (2011) Ectopic expression of an osmotin gene leads to enhanced salt tolerance in transgenic chilli pepper (Capsicum annum L.). Plant Cell Tiss Organ Cult 105:181–192

    Article  CAS  Google Scholar 

  • Sugita K, Matsunaga E, Ebinuma H (1999) Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Rep 18:941–947

    Article  CAS  Google Scholar 

  • Sun S, Zhou L, Lu M, Cai M, Jiang XW, Zhang QX (2009) Marker-free transgenic chrysanthemum obtained by Agrobacterium-mediated transformation with twin T-DNA binary vectors. Plant Mol Biol Rep 27:102–108

    Article  CAS  Google Scholar 

  • Suzuki JY, Tripathi S, Fermin G, Hou S, Saw J, Ackerman CM, Yu Q, Schatz MC, Pitz KY, Yepes M, Fitch MMM, Manshardt RM, Slightom JL, Ferreira SA, Salzberg S, Alam M, Ming R, Moore PH, Gonsalves D (2008) Efforts to deregulate Rainbow papaya in Japan: molecular characterization of transgene and vector inserts. In: Second international symposium on papaya, 9–12 December 2008, Madurai, India, p 56

  • Szankowski I, Waidmann S, Degenhardt J, Patocchi A, Paris R, Silfverberg-Dilworth E, Broggini G, Gessler C (2009) Highly scab-resistant transgenic apple lines achieved by introgression of HcrVf2 controlled by different native promoter lengths. Tree Genet Genomes 5:349–358

    Article  Google Scholar 

  • Tanaka Y, Katsumoto Y, Brugliera F, Mason J (2005) Genetic engineering in floriculture. Plant Cell Tiss Org Cult 80:1–24

    Article  CAS  Google Scholar 

  • Tang L, Kwon SY, Kim SH, Kim JS, Choi JS, Cho KY, Sung CK, Kwak SS, Lee HS (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25:1380–1386

    Article  CAS  Google Scholar 

  • Tao R, Dandekar AM, Uratsu SL, Vail PV, Tebbets JL (1997) Engineering genetic resistance against insects in Japanese Persimmon using the cryI(A)c gene of Bacillus thuringiensis. J Am Soc Hortic Sci 122:764–771

    CAS  Google Scholar 

  • Thirukkumaran G, Khan RS, Chin DP, Nakamura I, Mii M (2009) Isopentenyl transferase gene expression offers the positive selection of marker-free transgenic plant of Kalanchoe blossfeldiana. Plant Cell Tiss Organ Cult 97:237–242

    Article  CAS  Google Scholar 

  • Tian N, Wang J, Xu ZQ (2011) Overexpression of Na+/H+ antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of kiwifruit (Actinidia deliciosa). South Afr J Bot 77:160–169

    Article  CAS  Google Scholar 

  • Tian S, Jiang L, Gao Q, Zhang J, Zong M, Zhang H, Ren Y, Guo S, Gong G, Liu F, Xu Y (2017) Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep 36:399–406

    Article  CAS  Google Scholar 

  • Tripathi L, Mwangi M, Abele S, Aritua V, Tushemereirwe WK, Bandyopadhyay R (2009) Xanthomonas wilt: a threat to banana production in east and central Africa. Plant Dis 93:440–451

    Article  Google Scholar 

  • Tsai-Hung H, Jent-turn L, Yee-yung C, Ming-Tsair C (2002) Heterology expression of the Arabidopsis C-Repeat/Dehydration Response Element Binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 130:618–626

    Article  CAS  Google Scholar 

  • Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R, Ezura H, Osakabe Y, Osakabe K (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep 7:507

    Article  Google Scholar 

  • Valizadeh M, Deraison C, Kazemitabar SK, Rahbe Y, Jongsma MA (2013) Aphid resistance in florist’s chrysanthemum (Chrysanthemum morifolium Ramat.) induced by sea anemone equistatin overexpression. Afr J Biotechnol 12:6922–6930

    Google Scholar 

  • van der Krol AR, Lenting PE, Veenstra J, van der Meer IM, Koes RE, Gerats AGM, Mol JNM, Stuitje AR (1988) An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333:866–869

    Article  Google Scholar 

  • Vanblaere T, Szankowski I, Schaart J, Schouten H, Flachowsky H, Broggini GAL, Gessler C (2011) The development of a cisgenic apple plant. J Biotechnol 154:304–311

    Article  CAS  Google Scholar 

  • Vasudevan A, Selvaraj N, Ganapathi A, Choi CW (2007) Agrobacterium-mediated genetic transformation in cucumber (Cucumis sativus L.). Am. J Biotechnol Biochem 3:24–32

    Article  CAS  Google Scholar 

  • Vellice GR, Ricci JCD, Hernandez L, Castagnaro AP (2006) Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Res 15:57–68

    Article  CAS  Google Scholar 

  • Vieira P, Wantoch S, Lilley JL, Chitwood DJ, Atkinson HJ, Kamo K (2015) Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum cv. ‘Nellie White’. Transgenic Res 24:421–432

    Article  CAS  Google Scholar 

  • Wally O, Jayaraj J, Punja ZK (2009) Broad-spectrum disease resistance to necrotrophic and biotrophic pathogens in transgenic carrots (Daucus carota L.) expressing an Arabidopsis NPR1 gene. Planta 231:131–141

    Article  CAS  Google Scholar 

  • Wang Y, Wisniewsky M, Meilan R, Cui M, Webb R, Fuchigamy L (2005) Over-expression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 130:167–173

    CAS  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Cu M, Fuchigami L (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J Appl Hortic 8:87–90

    Google Scholar 

  • Wang RK, Li LL, Cao ZH, Zhao Q, Li M, Zhang LY, Hao YJ (2012) Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol Biol. doi:10.1007/s11103-012-9899-9

    Google Scholar 

  • Wen XP, Ban Y, Inoue H, Matsuda N, Moriguchi T (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19:91–103

    Article  CAS  Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  CAS  Google Scholar 

  • Wisniewski M, Fuchigami L, Wang Y, Srinivasan C, Norilli J (2002) Overexpression of a cytosolic ascorbate peroxidase gene in apple improves resistance to heat stress. In: XXXVI International Horticultural Congress and Exhibition, p 147 (Abstr.)

  • Xiangdong WEI, Congyul LAN, Zhijing LU, Changming YE (2007) Analysis on virus resistance and fruit quality for T4 generation of transgenic papaya. Front Biol China 2:284–290

    Google Scholar 

  • Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646

    Article  CAS  Google Scholar 

  • Yarra R, He SJ, Abbagani S, Ma B, Bulle M, Zhang WK (2012) Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.). Plant Cell Tiss Organ Cult 111(1):49–57

    Article  CAS  Google Scholar 

  • Yoshikawa M, Tsuda M, Takeuchi Y (1993) Resistance to fungal disease in transgenic tobacco plants expressing the phytoalexin elicitor-releasing factor, β-1,3-glucanase from soybean. Naturwissenschaften 80:417–420

    Article  CAS  Google Scholar 

  • Yu TA, Chiang CH, Wu HW, Li CM, Yang CF, Chen JH, Chen YW, Yeh SD (2011) Generation of transgenic watermelon resistant to Zucchini yellow mosaic virus and Papaya ringspot virus type W. Plant Cell Rep 30:359–371

    Article  CAS  Google Scholar 

  • Zainal Z, Marouf E, Ismail I, Fei CK (2009) Expression of the Capsicuum annum (Chilli) defensin gene in transgenic tomatoes confers enhanced resistance to fungal pathogens. Am J Plant Physiol 4:70–79

    Article  CAS  Google Scholar 

  • Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z (2011a) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33:403–409

    Article  CAS  Google Scholar 

  • Zhang Y, Li H, Shu W, Zhang C, Ye Z (2011b) RNA interference of a mitochondrial APX gene improves vitamin C accumulation in tomato fruit. Sci Hortic 129:222–226

    Google Scholar 

  • Zhang HY, Liu HM, Liu XZ (2015) Production of transgenic kiwifruit plants harboring the SbtCry1Ac gene. Genet Mol Res 14:8483–8489

    Article  CAS  Google Scholar 

  • Zheng ZL, Yang Z, Jang JC, Metzger JD (2001) Modification of plant architecture in chrysanthemum by ectopic expression of the tobacco phytochrome B1 gene. J Am Soc Hortic Sci 126:19–26

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nehanjali Parmar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmar, N., Singh, K.H., Sharma, D. et al. Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3 Biotech 7, 239 (2017). https://doi.org/10.1007/s13205-017-0870-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0870-y

Keywords

Navigation