Skip to main content
Log in

Functional analysis of selected deletion mutants in Candida glabrata under hypoxia

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Increased drug resistance in Candida glabrata (a model non-albicans Candida) calls for the identification of potential molecular targets for the development of effective drugs. Hypoxia (a state of low oxygen) is an important host factor, which affects the virulence of the pathogen and efficacy of drugs. In the present study, in vitro characterization of 13 null mutants of C. glabrata were done under hypoxic condition (1% O2). These mutants have a major role to play in cellular pathways, viability and pathogenesis (cell wall biosynthesis, ergosterol synthesis, calcium–calcineurin, etc.). The in vitro growth, biofilm formation and susceptibility of biofilm to antifungal drugs of these mutants were compared with the control. Hypoxia reduced the susceptibility of planktonic cells to fluconazole. The mutants ecm33Δ, kre1Δ, rox1Δ, and kre2Δ showed maximum reductions in their biofilm activities (>20%). The selected mutants (upc2BΔ, kre2 Δ, ecm7Δ, rox1 Δ, mid1Δ, ecm33Δ, cch1Δ, kre1Δ) showed reduced biofilm activities (>30%) in the presence of 16 μg ml−1 fluconazole under hypoxia. Functional analysis revealed that Kre1, Ecm33, Upc2B, Kre2, Ecm7, Cch1, Mid1 and Rox1 can be explored as a potential drug target for developing novel antifungal drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Arthington-Skaggs BA, Crowell DN, Yang H, Sturley SL, Bard M (1996) Positive and negative regulation of a sterol biosynthetic gene (ERG3) in the post-squalene portion of the yeast ergosterol pathway. FEBS Lett 392(2):161–165 (PMID: 8772195)

    Article  CAS  Google Scholar 

  • Askew C, Sellam A, Epp E, Hogues H, Mullick A, Nantel A, Whiteway M (2009) Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans. PLoS Pathog 5(10):1–10. doi:10.1371/journal.ppat.1000612

    Article  Google Scholar 

  • Boone C, Sommer SS, Hensel A, Bussey H (1990) Yeast KRE genes provide evidence for a pathway of cell wall beta-glucan assembly. J Cell Biol 110:1833–1843 (PMCID: PMC2200168)

    Article  CAS  Google Scholar 

  • Brand A, MacCallum DM, Brown AJ, Gow NA, Odds FC (2004) Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot Cell 3:900–909. doi:10.1128/EC.3.4.900-909.2004

    Article  CAS  Google Scholar 

  • Breining F, Schleinkofer K, Schmitt MJ (2004) Yeast Kre1p is GPI-anchored and involved in both cell wall assemble and architecture. Microbiology 150:3209–3218. doi:10.1099/mic.0.27175-0

    Article  Google Scholar 

  • Caggiano G, Coretti C, Bartolomeo N, Lovero G, De Giglio O, Montagna MT (2015) Candida bloodstream infections in Italy: changing epidemiology during 16 years of surveillance. Biomed Res Int 2015:1–9. doi:10.1155/2015/256580

    Article  Google Scholar 

  • Cammack R (1992) Iron-sulfur clustera in enzymes: themes and variations. In: Cammack R (ed) Iron-sulfur proteins, vol 38. Academic Press, San Diego, pp 281–322

    Google Scholar 

  • Chander J, Singla N, Sidhu SK, Gombar S (2013) Epidemiology of Candida blood stream infections: experience of a tertiary care centre in North India. J Infect Dev Ctries 7(9):670–675. doi:10.3855/jidc.2623

    Article  Google Scholar 

  • Dewhirst MW (1998) Concepts of oxygen transport at the microcirculatory level. Semin Radiat Oncol 8:143–150. doi:10.1016/S1053-4296(98)80040-4

    Article  CAS  Google Scholar 

  • Giri S, Kindo AJ (2012) A review of Candida species causing blood stream infection. Indian J Med Microbiol 30(3):270–278. doi:10.4103/0255-0857.99484

    Article  CAS  Google Scholar 

  • Gleason JE, Corrigan DJ, Cox JE, Reddi AR, McGinnis LA, Culotta VC (2011) Analysis of hypoxia and hypoxia-like states through metabolite profiling. PLoS One 6(9):1–13. doi:10.1371/journal.pone.0024741

    Article  Google Scholar 

  • Grahl N, Shepardson KM, Chung D, Cramer RA (2012) Hypoxia and fungal pathogenesis: to air or not to air? Eukaryot Cell 11(5):560–570. doi:10.1128/EC.00031-12

    Article  CAS  Google Scholar 

  • Groot PWJ, Bader O, Boer AD, Weig M, Chauhan N (2013) Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot Cell 12(4):470–481. doi:10.1128/EC.00364-12

    Article  Google Scholar 

  • Guinea J (2014) Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect 20:5–10. doi:10.1111/1469-0691.12539

    Article  Google Scholar 

  • Gupta P, Nath S, Meena RC, Kumar N (2014) Comparative effects of hypoxia and hypoxia mimetic cobalt chloride on in vitro adhesion, biofilm formation and susceptibility to amphotericin B of Candida glabrata. J Mycol Med 24:169–177. doi:10.1016/j.mycmed.2014.08.003

    Article  Google Scholar 

  • Gupta P, Meena RC, Rai N, Kumar N (2015) Effect of hypoxia on in vitro adhesion, biofilm formation and antifungal susceptibility of Candida albicans. Int J Pharm Sci Rev Res 32:279–283

    CAS  Google Scholar 

  • Gupta P, Chanda R, Rai N, Kataria VK, Kumar N (2016) Antihypertensive, amlodipine besylate inhibits growth and biofilm of human fungal pathogen Candida. Assay Drug Dev Technol 14:291–297. doi:10.1089/adt.2016.714

    Article  CAS  Google Scholar 

  • Jacobsen ID, Brunke S, Seider K, Schwarzmuller T, Firon A, d’Enfért C, Kuchler K, Hube B (2010) Candida glabrata persistence in mice does not depend on host immunosuppression and is unaffected by fungal amino acid auxotrophy. Infect Immun 78:1066–1077. doi:10.1128/IAI.01244-09

    Article  CAS  Google Scholar 

  • Johnson MK (1998) Iron-sulfur proteins: new role for old clusters. Curr Opin Chem Biol 2:173–181 (PMID: 9667933)

    Article  CAS  Google Scholar 

  • Juyal D, Sharma M, Pal S, Rathaur VK, Sharma N (2013) Emergence of non albicans Candida species in neonatal candidemia. N Am J Med Sci 5:541–545. doi:10.4103/1947-2714.118919

    Article  Google Scholar 

  • Kadosh D, Johnson AD (2001) Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol 21(7):2496–2505. doi:10.1128/MCB.21.7.2496-2505.2001

    Article  CAS  Google Scholar 

  • Kaur R, Castano I, Cormack BP (2004) Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrob Agents Chemother 48(5):1600–1613 (PMCID: PMC400560)

    Article  CAS  Google Scholar 

  • Kaur R, Domergue R, Zupancic ML, Cormack BP (2005) A yeast by any other name: Candida glabrata and its interaction with its host. Curr Opin Microbiol 8:378–384. doi:10.1016/j.mib.2005.06.012

    Article  CAS  Google Scholar 

  • Kispal G, Csere P, Prohl C, Lill R (1999) The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J 18(14):3981–3989. doi:10.1093/emboj/18.14.3981

    Article  CAS  Google Scholar 

  • LaFleur MD, Kumamoto CA, Lewis K (2006) Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 50(11):3839–3846. doi:10.1128/AAC.00684-06

    Article  CAS  Google Scholar 

  • Lay J, Henry LK, Clifford J, Koltin Y, Bulawa CE, Becker JM (1998) Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies. Infect Immun 66:5301–5306 (PMCID: PMC108662)

    CAS  Google Scholar 

  • Leighton J, Schatz G (1995) An ABC transporter in the mitochondrial inner membrane is required for normal growth of yeast. EMBO J 14(1):188–195 (PMCID: PMC398066)

    CAS  Google Scholar 

  • Mean M, Marchetti O, Calandra T (2008) Bench-to-bedside review: Candida infections in the intensive care unit. Crit Care 12:1–9. doi:10.1186/cc6212

    Article  Google Scholar 

  • Mundy RD, Cormack B (2009) Expression of Candida glabrata adhesions after exposure to chemical preservatives. J Infect Dis 199:1891–1899. doi:10.1086/599120

    Article  CAS  Google Scholar 

  • Nagi M, Nakayama H, Tanabe K, Bard M, Aoyama T, Okano M, Higashi S, Ueno K, Chibana H, Niimi M, Yamagoe S, Umeyama T, Kajiwara S, Ohno H, Miyazaki Y (2011) Transcription factors CgUPC2A and CgUPC2B regulate ergosterol biosynthetic genes in Candida glabrata. Genes Cells 16(1):80–89. doi:10.1111/j.1365-2443.2010.01470.x

    Article  CAS  Google Scholar 

  • National Committee for Clinical Laboratory Standards (2002) Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard, 2nd ed. NCCLS document M27-A. National Committee for Clinical Laboratory Standards, Wayne, Pa

  • Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, VanHandel M, Andes D (2007) Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 51:510–520. doi:10.1128/AAC.01056-06

    Article  CAS  Google Scholar 

  • Nett JE, Sanchez H, Cain MT, Andes DR (2010) Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J Infect Dis 202:171–175. doi:10.1086/651200

    Article  CAS  Google Scholar 

  • Nizet V, Johnson RS (2009) Interdependence of hypoxia and innate immune responses. Nat Rev Immunol 9:609–617. doi:10.1038/nri2607

    Article  CAS  Google Scholar 

  • Pahwa N, Kumar R, Nirkhiwale S, Bandi A (2014) Species distribution and drug susceptibility of Candida in clinical isolates from a tertiary care centre at Indore. Indian J Med Microbiol 32(1):44–48. doi:10.4103/0255-0857.124300

    Article  CAS  Google Scholar 

  • Pellegrini P, Haraldsson M, Jensen SJ, Lundback T, De Milito A (2015) A drug-screening model to identify compounds active in cells under metabolic stress. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18–22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res., 2015; 75 (15 Suppl): Abstract no. 5509. doi:10.1158/1538-7445.AM2015-5509

  • Pierce CG, Lopez-Ribot JL (2013) Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs. Expert Opin Drug Discov 8:1117–1126. doi:10.1517/17460441.2013.807245

    Article  CAS  Google Scholar 

  • Riera M, Mogensen E, d’Enfert C, Janbon G (2012) New regulators of biofilm development in Candida glabrata. Res Microbiol 163:297–307. doi:10.1016/j.resmic.2012.02.005

    Article  CAS  Google Scholar 

  • Rodrigues CF, Silva S, Henriques M (2014) Candida glabrata: a review of its features and resistance. Eur J Clin Microbiol Infect Dis 33(5):673–688. doi:10.1007/s10096-013-2009-3

    Article  CAS  Google Scholar 

  • Roemer T, Bussey H (1995) Yeast Kre1p is a cell surface O-glycoprotein. Mol Gen Genet 249:209–216 (PMID: 7500943)

    Article  CAS  Google Scholar 

  • Sanvisens N, Llanos R, Puig S (2013) Function and regulation of yeast ribonucleotide reductase: cell cycle, genotoxic stress, and iron bioavailability. Biomed J. 36(2):51–58. doi:10.4103/2319-4170.110398

    Article  Google Scholar 

  • Schwarzmuller T, Ma B, Hiller E, Istel F, Tscherner M, Brunke S, Ames L, Firon A, Green B, Cabral V, Marcet-Houben M, Jacobsen ID, Quintin J, Seider K, Frohner I, Glaser W, Jungwirth H, Bachellier-Bassi S, Chauvel M, Zeidler U, Ferrandon D, Gabaldón T, Hube B, d’Enfert C, Rupp S, Cormack B, Haynes K, Kuchler K (2014) Systematic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes. PLoS Pathog 10(6):1–19. doi:10.1371/journal.ppat.1004211

    Article  Google Scholar 

  • Setiadi ER, Doedt T, Cottier F, Noffz C, Ernst JF (2006) Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks. J Mol Biol 361:399–411. doi:10.1016/j.jmb.2006.06.040

    Article  CAS  Google Scholar 

  • Singh RP, Prasad HK, Sinha I, Agarwal N, Natarajan K (2011) Cap2-HAP complex is a critical transcriptional regulator that has dual but contrasting roles in regulation of iron homeostasis in Candida albicans. J Biol Chem 286:25154–25170. doi:10.1074/jbc.M111.233569

    Article  CAS  Google Scholar 

  • Skaggs BA, Alexander JF, Pierson CA, Schweitzer KS, Chun KT, Koegel C, Barbuch R, Bard M (1996) Cloning and characterization of the Saccharomyces cerevisiae C-22 sterol desaturase gene, encoding a second cytochrome P-450 involved in ergosterol biosynthesis. Gene 169(1):105–109 (PMID: 8635732)

    Article  CAS  Google Scholar 

  • Spitzer M, Griffiths E, Blakley KM, Wildenhain J, Ejim L, Rossi L, De Pascale G, Curak J, Brown E, Tyers M, Wright GD (2011) Cross-species discovery of syncretic drug combination that potentiates the antifungal fluconazole. Mol Syst Biol 7:1–14. doi:10.1038/msb.2011.31

    Google Scholar 

  • Synnott JM, Guida A, Mulhern-Haughey S, Higgins DG, Butler G (2010) Regulation of the hypoxic response in Candida albicans. Eukaryot Cell 9:1734–1746. doi:10.1128/EC.00159-10

    Article  CAS  Google Scholar 

  • Tak V, Mathur P, Varghese P, Gunjiyal J, Xess I, Misra MC (2014) The epidemiological profile of candidemia at an Indian Trauma Care Center. J Lab Physicians 6(2):96–101. doi:10.4103/0974-2727.141506

    Article  Google Scholar 

  • Teng J, Iida K, Imai A, Nakano M, Tada T, Iida H (2013) Hyperactive and hypoactive mutations in Cch1, a yeast homologue of the voltage-gated calcium-channel pore-forming subunit. Microbiology 159:970–979. doi:10.1099/mic.0.064030-0

    Article  CAS  Google Scholar 

  • Terashima H, Hamada K, Kitada K (2003) The localization change of Ybr078w/Ecm33, a yeast GPI-associated protein, from the plasma membrane to the cell wall, affecting the cellular function. FEMS Microbiol Lett 218:175–180 (PMID: 12583915)

    Article  CAS  Google Scholar 

  • Tsai HF, Krol AA, Sarti KE, Bennett JE (2006) Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants. Antimicrob Agents Chemother 50:1384–1392. doi:10.1128/AAC.50.4.1384-1392.2006

    Article  CAS  Google Scholar 

  • Tsang PW, Bandara HMHN, Fong WP (2012) Purpurin suppresses Candida albicans biofilm formation and hyphal development. PLoS One 7(11):1–11. doi:10.1371/journal.pone.0050866

    Google Scholar 

  • Vermitsky JP, Earhart KD, Smith WL, Homayouni R, Edlind TD, Rogers PD (2006) Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies. Mol Microbiol 61:704–722. doi:10.1111/j.1365-2958.2006.05235.x

    Article  CAS  Google Scholar 

  • Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317 (Epub 15 Jul 2004)

    Article  Google Scholar 

  • Yapar N (2014) Epidemiology and risk factors for invasive candidiasis. Ther Clin Risk Manag 10:95–105. doi:10.2147/TCRM.S40160

    Article  Google Scholar 

  • Zitomer RS, Carrico P, Deckert J (1997) Regulation of hypoxic gene expression in yeast. Kidney Int 51:507–513 (PMID: 9027731)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Brendan P. Cormack, Professor of Molecular Biology and Genetics, School of Medicine, John Hopkins University, Maryland, Baltimaore, and Dr. Rupinder Kaur, Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India, for providing the C. glabrata deletion mutants. PG is supported by the INSPIRE fellowship from the Department of Science and Technology, Government of India. We acknowledge the support of the Director, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi-54, along with Dr. Amitabha Chakrabarti, Sc. ‘F’ and Dr. Anju Bansal, Sc. ‘F’, DIPAS, for allowing us to use the facilities for hypoxia exposure and microbial culture in their laboratory. We are also thankful to Dr. Ashish Thapliyal, HOD, Biotechnology, Graphic Era University, for his constant support during the course of this study. This work was financially supported by Graphic Era University, Dehradun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navin Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding any issue related to this manuscript and the data presented.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13205_2017_821_MOESM1_ESM.eps

Fig. S1 Effect of hypoxia on mutants’ biofilm formation. The biofilm was formed in RPMI media for 42 h at 37 °C under hypoxia and normoxia and the metabolic activity of the biofilm formed was analyzed by XTT reduction assay. Optical density (O.D.) was measured at 492 nm. (EPS 17606 kb)

13205_2017_821_MOESM2_ESM.eps

Fig. S2 Antifungal susceptibility of C. glabrata mutants’ biofilm. Different concentration of fluconazole was added during biofilm formation of C. glabrata mutants. The biofilm formed after 48 h at 37 °C under hypoxic and normoxic conditions. The metabolic activity of biofilm formed was quantified by XTT reduction assay and the per cent reduction in the biofilm activity of each mutant, with reference to the biofilm activity of control strain, is shown as % Relative Metabolic Activity. (EPS 11093 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Meena, R.C. & Kumar, N. Functional analysis of selected deletion mutants in Candida glabrata under hypoxia. 3 Biotech 7, 193 (2017). https://doi.org/10.1007/s13205-017-0821-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0821-7

Keywords

Navigation