Skip to main content
Log in

Green synthesis of titanium dioxide nanoparticles using Laurus nobilis (bay leaf): antioxidant and antimicrobial activities

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Amalgamation of nanoparticles using “Green Technology” is an intensive field of research due to the increase in the need for the development of new antimicrobial materials. This method is meritorious both in environmental and economic aspects. In the present study, synthesis of titanium dioxide nanoparticles (TiO2 NPs) was done using the aqueous extract of Laurus nobilis (bay leaf). The characterization was done using UV–visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), particle size, and zeta potential analyses. Successful production of nanoparticles was confirmed by the presence of spherical-shaped TiO2 NPs with the size of ~ 100 nm. The nanoparticles were tested against pathogens to determine their antibacterial and antifungal activities. The antimicrobial and antifungal activities with various concentrations for the generated TiO2 NPs were investigated and the results showed that the synthesised nanoparticles manifested a good inhibitory activity against both the tested bacteria and the fungal strain. Bacillus subtilis and Aspergillus niger showed better zone of inhibition against nanoparticle. The observation is that the inhibition zone increases proportionately with the increased nanoparticles concentration. The as-prepared nanoparticles were also subjected to free radical scavenging ability using DPPH and hydrogen peroxide assays. TiO2 NPs revealed a strong antioxidant activity when compared with ascorbic acid standard. Current study concludes that the concocted TiO2 NPs, using L. nobilis bay leaf, can be scaled up for large-scale industrial production, which would be eco-friendly, economic with a high productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ajmal N, Saraswat K, Bakht MA, Riadi Y, Ahsan MJ, Noushad M (2019) Cost-effective and eco-friendly synthesis of titanium dioxide (TiO2) nanoparticles using fruit’s peel agro-waste extracts: characterization, in vitro antibacterial, antioxidant activities. Green Chem Lett Rev 12(3):244–254

    Article  CAS  Google Scholar 

  • Ali BM, Boothapandi M, Nasar AS (2020) Nitric oxide, DPPH and hydrogen peroxide radical scavenging activity of TEMPO terminated polyurethane dendrimers: Data supporting antioxidant activity of radical dendrimers. Data Brief 28:104972

    Article  Google Scholar 

  • Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M (2011) Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol 6(8):933–940

    Article  CAS  Google Scholar 

  • Anas A, Wiersinga W, De Vos A, Van der Poll T (2010) Recent insights into the pathogenesis of bacterial sepsis. Neth J Med 68(4):147–152

    CAS  Google Scholar 

  • Aviram M (2000) Review of human studies on oxidative damage and antioxidant protection related to cardiovascular diseases. Free Radic Res 33:S85-97

    CAS  Google Scholar 

  • Azouri A, Ge M, Xun K, Sattler K, Lichwa J, Ray C (2006) Zeta potential studies of titanium dioxide and silver nanoparticle composites in water-based colloidal suspension. In: Multifunctional Nanocomposites and Nanomaterials International Conference, 2006, pp. 221–223

  • Badnore AU, Sorde KI, Datir KA, Ananthanarayan L, Pratap AP, Pandit AB (2019) Preparation of antibacterial peel-off facial mask formulation incorporating biosynthesized silver nanoparticles. Appl Nanosci 9(2):279–287

    Article  CAS  Google Scholar 

  • Batool S, Khera RA, Hanif MA, Ayub MA (2020) Bay leaf, medicinal plants of South Asia. Elsevier, pp 63–74

    Book  Google Scholar 

  • Dobrucka R (2017) Synthesis of titanium dioxide nanoparticles using Echinacea purpurea herba. Iran JPharm Res IJPR 16(2):756

    Google Scholar 

  • Dréno B, Alexis A, Chuberre B, Marinovich M (2019) Safety of titanium dioxide nanoparticles in cosmetics. J Eur Acad Dermatol Venereol 33:34–46

    Article  Google Scholar 

  • Elmastaş M, Gülçin I, Işildak Ö, Küfrevioğlu Ö, İbaoğlu K, Aboul-Enein H (2006) Radical scavenging activity and antioxidant capacity of bay leaf extracts. J Iran Chem Soc 3(3):258–266

    Article  Google Scholar 

  • Feynman RP (1960) There’s plenty of room at the bottom. California Institute of Technology, Engineering and Science Magazine

    Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@ Ag nanoparticles. Nanotechnology 18(28):285604

    Article  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases. Drugs Aging 18(9):685–716

    Article  CAS  Google Scholar 

  • Hitchon CA, El-Gabalawy HS (2004) Oxidation in rheumatoid arthritis. Arthritis Res Ther 6(6):1–14

    Article  Google Scholar 

  • Ijadpanah-Saravy H, Safari M, Khodadadi-Darban A, Rezaei A (2014) Synthesis of titanium dioxide nanoparticles for photocatalytic degradation of cyanide in wastewater. Anal Lett 47(10):1772–1782

    Article  CAS  Google Scholar 

  • Imran K, Mohd F, Pratichi S, Padma T (2014) Nanotechnology for environmental remediation. Res J Pharm Biol Chem Sci 5(3):1916–1927

    Google Scholar 

  • Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L (2020) Biomedical applications of TiO2 nanostructures: recent advances. Int J Nanomed 15:3447

    Article  CAS  Google Scholar 

  • Kaliprasad C, Narayana Y (2018) A review on application of nanoparticles in biophysics. Res Rev J Phys 7(3):63–65

    CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: Properties, applications and toxicities. Arab J Chem 12(7):908–931

    Article  CAS  Google Scholar 

  • Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A (2018) Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog 123:505–526

    Article  CAS  Google Scholar 

  • Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267

    Article  CAS  Google Scholar 

  • Kozan E, Küpeli E, Yesilada E (2006) Evaluation of some plants used in Turkish folk medicine against parasitic infections for their in vivo anthelmintic activity. J Ethnopharmacol 108(2):211–216

    Article  Google Scholar 

  • Krithiga N, Rajalakshmi A, Jayachitra A (2015) Green synthesis of silver nanoparticles using leaf extracts of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. J Nanosci. https://doi.org/10.1155/2015/928204

    Article  Google Scholar 

  • Kruis FE, Fissan H, Rellinghaus B (2000) Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater Sci Eng B 69:329–334

    Article  Google Scholar 

  • Lai Y, Wang L, Liu D, Chen Z, Lin C (2015) TiO2-based nanomaterials: design, synthesis, and applications. Hindawi. https://doi.org/10.1155/2015/250632

    Article  Google Scholar 

  • Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118

    Article  CAS  Google Scholar 

  • Madasamy S, Sundan S, Krishnasamy L (2020) Preparation of cold cream against clinical pathogen using Caralluma adscendens var. attenuata. Asian J Pharm Clin Res 13(9):120–123

    Article  CAS  Google Scholar 

  • Magnusson MH, Deppert K, Malm J-O, Bovin J-O, Samuelson L (1999) Gold nanoparticles: production, reshaping, and thermal charging. J Nanopart Res 1(2):243–251

    Article  CAS  Google Scholar 

  • Mattiello A, Marchiol L (2017) Application of nanotechnology in agriculture: assessment of TiO2 nanoparticle effects on barley. In: Janus M (ed) Application of titanium dioxide. InTech, London, pp 23–39

    Google Scholar 

  • Mohajerani A, Burnett L, Smith JV, Kurmus H, Milas J, Arulrajah A, Horpibulsuk S, Abdul Kadir A (2019) Nanoparticles in construction materials and other applications, and implications of nanoparticle use. Materials 12(19):3052

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar P, Alam M (2001) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40(19):3585–3588

    Article  CAS  Google Scholar 

  • Nadaroglu H, Güngör AA, Selvi İ (2017) Synthesis of nanoparticles by green synthesis method. Int J Innov Res Rev 1(1):6–9

    Google Scholar 

  • Nath B, Barbhuiya T (2014) Studies on the density and surface area of nanoparticles from Camellia sinensis, A natural source. J Chem Pharm Res 6(11):608–610

    Google Scholar 

  • Nayak S, Nalabothu P, Sandiford S, Bhogadi V, Adogwa A (2006) Evaluation of wound healing activity of Allamanda cathartica. L. and Laurus nobilis. L. extracts on rats. BMC Complement Altern Med 6(1):12

    Article  Google Scholar 

  • Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA (2006) Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol 65(7):631–641

    Article  CAS  Google Scholar 

  • Ozcan B, Esen M, Sangun MK, Coleri A, Caliskan M (2010) Effective antibacterial and antioxidant properties of methanolic extract of Laurus nobilis seed oil. J Environ Biol 31(5):637–641

    CAS  Google Scholar 

  • Pestovsky YS, Martínez-Antonio A (2017) The use of nanoparticles and nanoformulations in agriculture. J Nanosci Nanotechnol 17(12):8699–8730

    Article  CAS  Google Scholar 

  • Rattan SI (2006) Theories of biological aging: genes, proteins, and free radicals. Free Radic Res 40(12):1230–1238

    Article  CAS  Google Scholar 

  • Rodríguez-González V, Terashima C, Fujishima A (2019) Applications of photocatalytic titanium dioxide-based nanomaterials in sustainable agriculture. J Photochem Photobiol, C 40:49–67

    Article  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(1):3

    Article  Google Scholar 

  • Samejima K, Kanazawa K, Ashida H, Danno G-I (1998) Bay laurel contains antimutagenic kaempferyl coumarate acting against the dietary carcinogen 3-amino-1-methyl-5 H-pyrido [4, 3-b] indole (Trp-P-2). J Agric Food Chem 46(12):4864–4868

    Article  CAS  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Jayaseelan C, Rajakumar G, Marimuthu S, Kirthi AV, Velayutham K, Thomas J, Venkatesan J, Kim S-K (2014) Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med 7(12):968–976

    Article  CAS  Google Scholar 

  • Santos FW, Graça DL, Zeni G, Rocha JB, Weis SN, Favero AM, Nogueira CW (2006) Sub-chronic administration of diphenyl diselenide potentiates cadmium-induced testicular damage in mice. Reprod Toxicol 22(3):546–550

    Article  CAS  Google Scholar 

  • Sawhney APS, Condon B, Singh KV, Pang S-S, Li G, Hui D (2008) Modern applications of nanotechnology in textiles. Text Res J 78(8):731–739

    Article  CAS  Google Scholar 

  • Sethy NK, Arif Z, Mishra PK, Kumar P (2020) Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Process Synth 9(1):171–181

    Article  Google Scholar 

  • Sharfudeen BFJM, Latheef AFA, Ambrose RV (2017) Synthesis and characterization of TiO2 nanoparticles and investigation of antimicrobial activities against human pathogens. J Pharm Sci Res 9(9):1604

    CAS  Google Scholar 

  • Sharma D, Kanchi S, Bisetty K (2019) Biogenic synthesis of nanoparticles: a review. Arab J Chem 12(8):3576–3600

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A, Rao RA (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16(1):14

    Article  Google Scholar 

  • Singh R, Chidambara Murthy K, Jayaprakasha G (2002) Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J Agric Food Chem 50(1):81–86

    Article  CAS  Google Scholar 

  • Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK, Rather IA (2017) Application of nanotechnology in food science: perception and overview. Front Microbiol 8:1501

    Article  Google Scholar 

  • Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res 13(7):2981–2988

    Article  CAS  Google Scholar 

  • Sofyan N, Ridhova A, Yuwono AH, Udhiarto A (2017) Fabrication of solar cells with TiO2 nanoparticles sensitized using natural dye extracted from mangosteen pericarps. Int J Technol 8(7):1229–1238

    Article  Google Scholar 

  • Stocker R, Keaney JF Jr (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84(4):1381–1478

    Article  CAS  Google Scholar 

  • Szabo C (2009) Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol 156(5):713–727

    Article  CAS  Google Scholar 

  • Tian J, Hu J, Li F, Ni M, Li Y, Wang B, Xu K, Shen W, Li B (2016) Effects of TiO2 nanoparticles on nutrition metabolism in silkworm fat body. Biology Open 5(6):764–769

    Article  CAS  Google Scholar 

  • Varshney R, Bhadauria S, Gaur M (2010) Biogenic synthesis of silver nanocubes and nanorods using sundried Stevia rebaudiana leaves. Adv Mat Lett 1(3):232–237

    Article  Google Scholar 

  • Wan J, Song T, Flox C, Yang J, Yang Q-H, Han X (2015) Advanced nanomaterials for energy-related applications. Hindawi. https://doi.org/10.1155/2015/564097

    Article  Google Scholar 

  • Wood-Kaczmar A, Gandhi S, Wood N (2006) Understanding the molecular causes of Parkinson’s disease. Trends Mol Med 12(11):521–528

    Article  CAS  Google Scholar 

  • Yadav K, Singh J, Gupta N, Kumar V (2017) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci 8(2):740–757

    CAS  Google Scholar 

  • Zand AD, Mikaeili Tabrizi A, Vaezi Heir A (2020) Application of titanium dioxide nanoparticles to promote phytoremediation of Cd-polluted soil: contribution of PGPR inoculation. Bioremed J 24(2–3):171–189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Taif University Researchers Supporting Project number (TURSP- 2020/157), Taif University, Taif, Saudi Arabia. The authors thank King Khalid University for collaboration and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathirvel Brindhadevi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeswari, V.D., Eed, E.M., Elfasakhany, A. et al. Green synthesis of titanium dioxide nanoparticles using Laurus nobilis (bay leaf): antioxidant and antimicrobial activities. Appl Nanosci 13, 1477–1484 (2023). https://doi.org/10.1007/s13204-021-02065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-02065-2

Keywords

Navigation