Skip to main content
Log in

Performance analysis of R600a vapour compression refrigeration system using CuO/Al2O3 hybrid nanolubricants

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

In this research the evaluation of performance of R600a vapour compression system was investigated using CuO/Al2O3 hybrid nanolubricants. Three different hybrid nanolubricants concentrations of 0.2, 0.4 and 0.6 g/L was considered for this study with 70 g of R600a refrigerant. The experiment was conducted for the analysis of various important parameters such as coefficient of performance, refrigeration effect and compressor power consumption, pull down of refrigerator and transmittance of both mineral oil without nanoparticles and nanodoped mineral oil while using CuO/Al2O3 hybrid nanoparticles with the lubricant. The study was done with R600a refrigeration system and can be employed as better replacement for pure mineral refrigeration system. Addition of CuO/Al2O3 hybrid nanoparticles in to a compressor lubricating oil resulted in enhanced coefficient of performance up to 27% from 1.17 to 1.6 and increase in cooling capacity up to 20% from 160 to 200 W and reduction in power utilized by the compressor up to 24% from 158 to 120 W in comparison with the R600a system without nanolubricants. CuO/Al2O3 hybrid nanolubricant refrigerator can be employed as better substitute for R134a refrigerator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

VCRS:

Vapour compression refrigeration system

COP:

Coefficient of performance

MO:

Mineral oil

POE:

Polyester oil

LPG:

Liquified petroleum gas

PAG:

Polyalkylene glycol

MWCNT:

Multiwall carbon nanotube

CNT:

Carbon nanotube

h:

Enthalpy (kJ/kg)

T:

Temperature (°C)

\(\dot{m}\) :

Mass flow rate (kg/s)

1:

Compressor inlet

2:

Compressor outlet

3:

Condenser outlet

4:

Evaporator outlet

References

  • Abdul Hamid K, Azmi WH, Nabil MF, Mamat R, Sharma KV (2018) Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluid. Int J Heat Mass Transf 116:1143–1152

    Article  Google Scholar 

  • Adelekan DS, Ohunakin OS, Babarinde TO, Odunfa MK, Leramo RO, Oyedepo SO, Badejo DC (2017) Experimental performance of LPG refrigerant charges with varied concentration of TiO2 nano-lubricants in a domestic refrigerator. Case Stud Thermal Eng 9:55–61

    Article  Google Scholar 

  • Adelekan DS, Ohunakin OS, Jatinder Gill OE, Atiba IPO, Tayero AA (2019a) Experimental investigation of a vapour compression refrigeration system with 15nm Tio2-R600a nano-refrigerant as the working fluid. Procedia Manuf 35:1222–1227. https://doi.org/10.1016/j.promfg.2019.06.079

    Article  Google Scholar 

  • Adelekan DS, Ohunakin OS, Jatinder Gill IP, Okokpujie OEA (2019b) Performance of an iso-butane driven domestic refrigerator infused with various concentrations of graphene based nanolubricants. Procedia Manuf 35:1146–1151

    Article  Google Scholar 

  • Adelekan DS, Ohunakin OS, Jatinder Gill OE, Atiba IPO, Atayero AA (2019c) Performance of a domestic refrigerator infused with safe charge of R600a refrigerant and various concentrations of TiO2 nanolubricants. Procedia Manuf 35:1158–1164

    Article  Google Scholar 

  • Ajayi OO, Ukasoanya DE, Ogbonnaya M, Salawu EY, Okokpujie IP, Akinlabi SA, Akinlabi ET, Owoeye FT (2019) Investigation of the effect of R134a/Al2O3 – nanofluid on the performance of a domestic vapour compression refrigeration system. Procedia Manuf 35:112–117

    Article  Google Scholar 

  • Aktas M, Dalkilic AS, Celen A, Cebi A, Mahian O, Wongwises S (2015) A theoretical comparative study on nanorefrigerant performance in a single-stage vapor-compression refrigeration cycle. Adv Mech Eng 7(1):1–11

    Article  Google Scholar 

  • Alawi OA, Sidik NAC, Mohammed HA (2014) A comprehensive review of fundamentals, preparation and applications of nanorefrigerants. Int Commun Heat Mass Transfer 54:81–95

    Article  CAS  Google Scholar 

  • Alawi OA, Sidik NAC, Kherbeet ASH (2015a) Measurements and correlations of frictional pressure drop of TiO2/R123 flow boiling inside a horizontal smooth tube. Int Commun Heat Mass Transfer 61:42–48

    Article  CAS  Google Scholar 

  • Alawi OA, Sidik NAC, Kherbeet ASH (2015b) Nanorefrigerant effects in heat transfer performance and energy consumption reduction: a review. Int Commun Heat Mass Transfer 69:76–83

    Article  CAS  Google Scholar 

  • Anish M, Senthil Kumar G, Beemkumar N, Kanimozhi B, Arunkumar T (2018) Performance study of a domestic refrigerator using CuO/Al2O3-R22 a nano—refrigerant as working fluid. Int J Ambient Energy 41:152–156

    Article  Google Scholar 

  • Azmi WH, Sharif MZ, Yusof TM, Mamat R, Redhwan AAM (2017) Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system A –review. Renew Sustain Energy Rev 69:415–428

    Article  CAS  Google Scholar 

  • Babarinde TO, Akinlabi SA, Madyira DM (2020a) Energy performance evaluation of R600a/MWCNT-nanolubricant as a drop-in replacement for R134a in household refrigerator system. Energy Rep 6:639–647

    Article  Google Scholar 

  • Babarinde TO, Akinlabi SA, Madyira DM, Ekundayo FM (2020b) Enhancing the energy efficiency of vapour compression refrigerator system using R600a with graphene nanolubricant. Energy Rep 6:1–10

    Article  Google Scholar 

  • Bhat MW, Vyas G, Jaffri AJ, Dondapati RS (2018) Investigation on the thermophysical properties of Al2O3, Cu and SiC based Nano-refrigerants. Material Today Proc 5:27820–27827

    Article  CAS  Google Scholar 

  • Bi S, Guo K, Liu Z, Jiangtao Wu (2011) Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid. Energy Convers Manage 52:733–737

    Article  CAS  Google Scholar 

  • Celen A, Çebi A, Aktas M, Mahian O, Dalkilic AS, Wongwises S (2014) A review of nanorefrigerants: flow characteristics and applications. Int J Refrig 44:125–140

    Article  CAS  Google Scholar 

  • Ding G, Peng H, Jiang W, Gao Y (2009) The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant–oil mixture. Int J Refrig 32:114–123

    Article  CAS  Google Scholar 

  • Esfe MH, Alirezaie A, Rejvani M (2017) An applicable study on the thermal conductivity of SWCNT-MgO hybrid nanofluid and price-performance analysis for energy management. Appl Therm Eng 111:1202–1210

    Article  Google Scholar 

  • Esfe MH, Dalir R, Bakhtiari R, Afrand M (2019) Simultaneous effects of multi-walled carbon nanotubes and copper oxide nanoparticles on the rheological behavior of cooling oil: application for refrigeration systems. Int J Refrig 104:123–133

    Article  CAS  Google Scholar 

  • Gill J, Singh J, Ohunakin OS, Adelekan DS (2018) Artificial neural network approach for irreversibility performance analysis of domestic refrigerator by utilizing LPG with TiO2–lubricant as replacement of R134a. Int J Refrig 89:159–176

    Article  CAS  Google Scholar 

  • Haque ME, Bakar RA, Kadirgama K, Noor MM, Shakaib M (2016) Performance of a domestic refrigerator using nanoparticles-based polyol ester oil lubricant. J Mech Eng Sci 10:1778–1791

    Article  CAS  Google Scholar 

  • Jaffri AJ, Dondapati RS, Bhat MW, Vyas G (2018) Investigation on thermo-physical properties of mixed nano-refrigerant with CuO based nanoparticles. Mater Today Proc 5:27795–27800

    Article  CAS  Google Scholar 

  • Jatinder G, Ohunakin OS, Adelekan DS, Atiba OE, Daniel AB, Singh J, Atayero AA (2019) Performance of a domestic refrigerator using selected hydrocarbon working fluids and TiO2–MO nanolubricant. Appl Thermal Eng 160:114004

    Article  CAS  Google Scholar 

  • Javadi FS, Saidur R (2013) Energetic, economic and environmental impacts of using nanorefrigerant in domestic refrigerators in Malaysia. Energy Convers Manage 73:335–339

    Article  CAS  Google Scholar 

  • Krishna Sabareesh R, Gobinath N, Sajith V, Das S, Sobhan CB (2012) Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems—an experimental investigation. Int J Refrig 35:1989–1996

    Article  CAS  Google Scholar 

  • Kumaresan V, Velraj R, Das SK (2012) Convective heat transfer characteristics of secondary refrigerant based CNT nanofluids in a tubular heat exchanger. Int J Refrig 35:2287–2296

    Article  CAS  Google Scholar 

  • Lee K, Hwang Y, Cheong S, Kwon L, Kim S, Lee J (2009) Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil. Curr Appl Phys 9:128–131

    Article  Google Scholar 

  • Lou J-F, Zhang H, Wang R (2015) Experimental investigation of graphite nanolubricant used in a domestic refrigerator. Adv Mech Eng 7:1–9

    Article  Google Scholar 

  • Mahbubul IM, Saidur R, Amalina MA (2013) Heat transfer and pressure drop characteristics of Al2O3-R141b nanorefrigerant in horizontal smooth circular tube. Procedia Eng 56:323–329

    Article  CAS  Google Scholar 

  • Mahbubul IM, Saadah A, Saidur R, Khairul MA, Kamyar A (2015) Thermal performance analysis of Al2O3/R-134a nanorefrigerant. Int J Heat Mass Transf 85:1034–1040

    Article  CAS  Google Scholar 

  • Nabil MF, Azmi WH, Hamid KA, Zawawi NNM, Priyandoko G, Mamat R (2017a) Thermo-physical properties of hybrid nanofluids and hybrid Nano lubricants: a comprehensive review on performance. Int Commun Heat Mass Transfer 83:30–39

    Article  CAS  Google Scholar 

  • Nabil MF, Azmi WH, Abdul Hamid K, Mamat R, Hagos FY (2017b) An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: ethylene glycol mixture. Int Commun Heat Mass Transfer 86:181–189

    Article  CAS  Google Scholar 

  • Nair V, Parekh AD, Tailor PR (2020) Experimental investigation of a vapour compression refrigeration system using R134a/Nano-oil mixture. Int J Refrig 112:21–36

    Article  CAS  Google Scholar 

  • Narayanasarma S, Kuzhiveli BT (2019) Evaluation of the properties of POE/SiO2 nanolubricant for an energy efficient refrigeration system—an experimental assessment. Powder Technol 356:1029–1044

    Article  CAS  Google Scholar 

  • Ndoye FT, Schalbart P, Leducq D, Alvarez G (2015) Numerical study of energy performance of nanofluids used in secondary loops of refrigeration systems. Int J Refrig 52:122–132

    Article  CAS  Google Scholar 

  • Ohunakin OS, Adelekan DS, Babarinde TO, Leramo RO, Abam FI, Diarra CD (2017) Experimental investigation of TiO2-SiO2,-and Al2O3-lubricants for a domestic refrigerator system using LPG as working fluid. Appl Therm Eng 127:1469–1477

    Article  CAS  Google Scholar 

  • Ohunakin OS, Adelekan DS, Gill J, Atayero AA, Atiba OE, Okokpujie IP, Abam FI (2018) Performance of a hydrocarbon driven domestic refrigerator based on varying concentration of SiO2 nano-lubricant. Int J Refrig 94:59–70

    Article  CAS  Google Scholar 

  • Pico DFM, Rosa LR, da Silva P, Schneider S, Filho EPB (2019) Performance evaluation of diamond nanolubricants applied to a refrigeration system. Int J Refrig 100:104–112

    Article  Google Scholar 

  • Pico DFM, da Silva LRR, Mendoza OSH, Filho EPB (2020) Experimental study on thermal and tribological performance of diamond nanolubricants applied to a refrigeration system using R32. Int J Heat Mass Transf 152:119493

    Article  Google Scholar 

  • Redhwan AAM, Azmi WH, Sharif MZ, Mamat R (2016) Development of nanorefrigerants for various types of refrigerant based: a comprehensive review on performance. Int Commun Heat Mass Transfer 76:285–293

    Article  CAS  Google Scholar 

  • Reji Kumar R, Sridhar K, Narasimha M (2013) Heat transfer enhancement in domestic refrigerator using R600a/mineral oil/nano-Al2O3 as working fluid. Int J Comput Eng Res 3(4):42–50

    Google Scholar 

  • Santhana Krishnan R, Arulprakasajothi M, Logesh K, Dilip Raja N, Rajendra M (2018) Analysis and feasibilty of nano-lubricant in vapour compression refrigeration system. Material Today Proc 5:20580–20587

    Article  CAS  Google Scholar 

  • Sanukrishna SS, Jose Prakash M (2018) Experimental studies on thermal and rheological behaviour of TiO2-PAG nanolubricant for refrigeration system. Int J Refrig 86:356–372

    Article  CAS  Google Scholar 

  • Sanukrishna SS, Vishnu S, Krishnakumar TS, Jose Prakash M (2018) Effect of oxide nanoparticles on the thermal, rheological and tribological behaviours of refrigerant compressor oil: an experimental investigation. Int J Refrig 90:32–45

    Article  CAS  Google Scholar 

  • Sanukrishna SS, Shafi M, Maneesh Murukan M, Prakash J (2019) Effect of SiO2 nanoparticles on the heat transfer characteristics of refrigerant and tribological behaviour of lubricant. Powder Technol 356:39–49

    Article  CAS  Google Scholar 

  • Saravanan K, Vijayan R (2018) Performance of Al2O3/TiO2 nano composite particles in domestic refrigerator. J Exp Nanosci 13:245–257

    Article  CAS  Google Scholar 

  • Sendil Kumar D, Elansezhia R (2012) Experimental study on Al2O3-R134a nanorefrigerant in refrigeration system. Int J Modern Eng Res 2(5):3927–3929

    Google Scholar 

  • Sharif MZ, Azmi WH, Mamat R, Shaiful AIM (2018) Mechanism for improvement in refrigeration system performance by using Nano refrigerants and nanolubricants—a review. Int Commun Heat Mass Transfer 92:56–63

    Article  CAS  Google Scholar 

  • Singh K, Lal K (2014) An investigation into the performance of a nanorefrigerant (R134a + Al2O3) based refrigeration system. Int J Res Mech Eng Technol 4(2):158–161

    Google Scholar 

  • Subramani N, Aswin Mohan M, Prakash J (2013) Performance studies on a vapour compression refrigeration system using nano-lubricant. Int J Innov Res Sci Eng Technol 2:522–530

    Google Scholar 

  • Vasconcelos AA, Gómez AOC, Filho EPB, Parise JAR (2017) Experimental evaluation of SWCNT-water nanofluid as a secondary fluid in a refrigeration system. Appl Therm Eng 111:1487–1492

    Article  CAS  Google Scholar 

  • Venkataramana VMV, Palanisamy S (2012) The use of TiO2 nanoparticles to reduce refrigerator ir-reversibility. Energy Convers Manage 59:122–132

    Article  Google Scholar 

  • Yang S, Xiaoyu Cui Yu, Zhou CC (2020) Study on the effect of graphene nanosheets refrigerant oil on domestic refrigerator performance. Int J Refrig 110:187–195

    Article  CAS  Google Scholar 

  • Yee RP, Hermes CJL (2018) A thermodynamic study of water-based nanosuspensions as secondary heat transfer fluids in refrigeration systems. Int J Refrig 89:104–111

    Article  CAS  Google Scholar 

  • Zawawi NNM, Azmi WH, Redhwan AAM, Sharif MZ, Sharma KV (2017) Thermo-physical properties of Al2O3-SiO2/PAG composite nanolubricant for refrigeration system. Int J Refrig 80:1–10

    Article  CAS  Google Scholar 

  • Zawawi NNM, Azmi WH, Redhwan AAM, Sharif MZ, Samykano M (2018) Experimental investigation on thermo-physical properties of metal oxide composite nano lubricants. Int J Refrig 89:11–21

    Article  CAS  Google Scholar 

Download references

Funding

No funding received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manigandan Sekar.

Ethics declarations

Conflict of interest

No conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthilkumar, A., Anderson, A. & Sekar, M. Performance analysis of R600a vapour compression refrigeration system using CuO/Al2O3 hybrid nanolubricants. Appl Nanosci 13, 899–915 (2023). https://doi.org/10.1007/s13204-021-01936-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-01936-y

Keywords

Navigation