Skip to main content

Advertisement

Log in

Application of new multicomponent nanosystems for overcoming doxorubicin resistance in breast cancer therapy

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The multi-component nanosystems based on the branched copolymer dextran-graft-polyacrylamide in an anionic form (D-g-PAAan) with gold nanoparticles (AuNPs), photosensitizer Chlorine e6 (Ce6), and chemotherapeutic agent Doxorubicin (Dox) were developed for use in complex breast cancer therapy. The synthesized nanosystems were characterized by Quasi Elastic Light Scattering and Transmission Electron Microscopy and tested against the malignant cells MCF-7/Dox resistant to Dox. It is found that the addition of Dox as the fourth component to the three-component nanosystem D-g-PAAan/AuNPs/Ce6 leads to aggregation and, as a result, to decrease in efficiency of tumor treatment. The way to reduce unwanted aggregation in the four-component nanosystem D-g-PAAan/AuNPs/Ce6/Dox is proposed. The new nanosystems are shown to be effective in overcoming Dox resistance and killing cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, Yuliia Kuziv, upon reasonable request.

References

  • Aghebati-Maleki A, Dolati S, Ahmadi M, Baghbanzhadeh A, Asadi M, Fotouhi A, Yousefi M, Aghebati-Maleki L (2020) Nanoparticles and cancer therapy: perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol 235(3):1962–1972. https://doi.org/10.1002/jcp.29126

    Article  CAS  Google Scholar 

  • Beenken SW, Bland KI (2002) Biomarkers for breast cancer. Minerva Chir 57(4):437–448

    CAS  Google Scholar 

  • Benov L (2014) Photodynamic therapy: current status and future directions. Review Med PrincPract 24(1):14–28. https://doi.org/10.1159/000362416

    Article  Google Scholar 

  • Bezuglyi M, Kutsevol N, Rawiso M, Bezugla T (2012) Water-soluble branched copolymers dextran-polyacrylamide and their anionic derivates as matrices for metal nanoparticles in-situ synthesis. Chemik 8(66):862–867

    Google Scholar 

  • Bucharskaya A, Maslyakova G, Terentyuk G, Yakunin A, Avetisyan Y, Bibikova O, Tuchina E, Khlebtsov B, Khlebtsov N, Tuchin V (2016) Towards effective photothermal/photodynamic treatment using plasmonic gold nanoparticles. Int J Mol Sci 17(8):1295. https://doi.org/10.3390/ijms17081295

    Article  CAS  Google Scholar 

  • Calavia PG, Bruce G, Pérez-García L, Russell DA (2018) Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem Photobiol Sci 17:1534–1552. https://doi.org/10.1039/C8PP00271A

    Article  Google Scholar 

  • Chekhun VF, Zalutskii IV, Naleskina LA, Lukianova NY, Yalovenko TM, Borikun TV, Sobchenko SO, Semak IV, Lukashevich VS (2015) Modifying effects of lactoferrin in vitro on molecular phenotype of human breast cancer cells. Experiment Oncol 37(3):181–186

    Article  CAS  Google Scholar 

  • Chekhun VF, Borikun TV, Lukianova NY (2016) Effect of 5-azacytidine on mirna expression in human breast cancer cells with different sensitivity to cytostatics. Experiment Oncol 38(1):26–30

    Article  CAS  Google Scholar 

  • Chumachenko V, Kutsevol N, Rawiso M, Schmutz M, Blanck C (2014) In situ formation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agent. Nanoscale Res Lett 9:164. https://doi.org/10.1186/1556-276X-9-164

    Article  CAS  Google Scholar 

  • Chumachenko VA, Shton IO, Shishko ED, Kutsevol NV, Marinin AI, Gamaleia NF (2016) Branched Copolymers Dextran-Graft-Polyacrylamide as Nanocarriers for Delivery of gold nanoparticles and photosensitizers to tumor cells. In: Fesenko O, Yatsenko L (eds) Nanophysics, nanophotonics, surface studies, and applications, Vol 183 of the series. Springer Proceedings in Physics, pp. 379–390. https://doi.org/10.1007/978-3-319-30737-4_32

  • Chumachenko V, Kutsevol N, Harahuts Yu, Rawiso M, Marinin A, Bulavin L (2017) Star-like Dextran-graft-PNiPAM copolymers. Effect of internal molecular structure on the phase transition. J Mol Liq 235:77–82. https://doi.org/10.1016/j.molliq.2017.02.098

    Article  CAS  Google Scholar 

  • Karch J, Schips TG, Maliken BD et al (2017) Autophagic cell death is dependent on lysosomal membrane permeability through Bax and Bak. Elife 6:e30543. https://doi.org/10.7554/eLife.30543

    Article  Google Scholar 

  • Kutsevol N, Bezugla T, Bezuglyi M, Rawiso M (2012) Branched dextran-graft-polyacrylamide copolymers as perspective materials for nanotechnology. Macromol Symp 317–318(1):82–90. https://doi.org/10.1002/masy.201100087

    Article  CAS  Google Scholar 

  • Kutsevol N, Bezuglyi M, Rawiso M, Bezugla T (2014) Star-like dextran-graft-(polyacrylamide-co-polyacrylic acid) copolymers. Macromol Symp 335:12–16. https://doi.org/10.1002/masy.201200115

    Article  CAS  Google Scholar 

  • Kutsevol NV, Chumachenko VA, Rawiso M, Shkodich VF, Stoyanov OV (2015) Star-like polymers dextran-polyacrylamide: the prospects of application for nanotechnology. J Struct Chem 56(5):1016–1023. https://doi.org/10.1134/S0022476615050200

    Article  CAS  Google Scholar 

  • Kutsevol N, Chumachenko V, Harahuts Yu, Marinin A (2017) Aging process of gold nanoparticles synthesized in situ in aqueous solutions of polyacrylamides. In: Mukbanianym OV, Abadie MJ, Tatrishvili T (eds) Chemical engineering of polymers. Production of functional and flexible materials. Apple Academic Press, Kerala, 119–129. https://doi.org/10.1201/9781315365985

  • Kutsevol N, Harahuts Yu, Shton I, Borikun T, Storchai D, Lukianova N, Chekhun V (2018a) In vitro study of toxicity of hybrid gold-polymer composites. Mol Cryst Liq Cryst 671(1):1–8. https://doi.org/10.1080/15421406.2018.1542078

    Article  CAS  Google Scholar 

  • Kutsevol N, Naumenko A, Chumachenko V, Yeshchenko O, Harahuts Yu, Pavlenko V (2018) Aggregation processes in hybrid nanosystem polymer/nanosilver/cisplatin. Ukrainian J Physic 63(6):513–520 https://doi.org/10.15407/ujpe63.6.5138

  • Kutsevol N, Naumenko A, Harahuts Yu, Chumachenko V, Shton I, Shishko E, Lukianova N, Chekhun V (2019) New hybrid composites for photodynamic therapy: synthesis, characterization and biological study. Appl Nanoscience 9:881. https://doi.org/10.1007/s13204-018-0768-y

    Article  CAS  Google Scholar 

  • Kutsevol N, Kuziv Yu, Bezugla T, Chumachenko V, Chekhun V (2020) Multicomponent nanocomposites for complex anti-cancer therapy: effect of aggregation processes on their efficacy. Hindawi 2020 (Article ID 9627954):7. https://doi.org/10.1155/2020/9627954

  • Lee JH, Nan A (2012) Combination drug delivery approaches in metastatic breast cancer. J Drug Delivery 2012(Article ID 915375):17. https://doi.org/10.1155/2012/915375

  • Liechty WB, Kryscio DR, Brandon V, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173. https://doi.org/10.1146/annurev-chembioeng-073009-100847

    Article  CAS  Google Scholar 

  • Losytskyy MYu, Madan IV, Kutsevol NV, Petrenko MM, Yashchuk VM (2014) Effect of polyacrylamide and dextran-polyacrylamide graft polymers on absorption and fluorescence spectra of hematoporphyrin. Mol Cryst Mol Liq 589(1):226–231

    Article  CAS  Google Scholar 

  • Matvienko T, Sokolova V, Prylutska S, Harahuts Yu, Kutsevol N, Kostjukov V, Evstigneev M, Prylutskyy Yu, Epple M, Ritter U (2019) In vitro study of the anticancer activity of various Doxorubicin-containing dispersions. Bioimpacts 9(1):57–63. https://doi.org/10.15171/bi.2019.07

  • Navya PN, Kaphle A, Srinivas SP et al (2019) Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence 6:23. https://doi.org/10.1186/s40580-019-0193-2

    Article  CAS  Google Scholar 

  • Pisani C, Ramella M, Boldorini R et al (2020) Apoptotic and predictive factors by Bax, Caspases 3/9, Bcl-2, p53 and Ki-67 in prostate cancer after 12 Gy single-dose. Sci Rep 10(1):7050. https://doi.org/10.1038/s41598-020-64062-9

    Article  CAS  Google Scholar 

  • Quader S, Kataoka K (2017) Nanomaterial-enabled cancer therapy. Mol Ther 25(7):1501–1513. https://doi.org/10.1016/j.ymthe.2017.04.026

    Article  CAS  Google Scholar 

  • Rivankar S (2014) An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther 10(4):853–858. https://doi.org/10.4103/0973-1482.139267

    Article  Google Scholar 

  • Senut MC, Zhang Y, Liu F, Sen A, Ruden DM, Mao G (2016) Size-dependent toxicity of gold nanoparticles on human embryonic stem cells and their neural derivatives. Small 12(5):631–646. https://doi.org/10.1002/smll.201502346

    Article  CAS  Google Scholar 

  • Wakharde AA, Awad AH, Bhagat A, Karuppayil SM (2018) Synergistic activation of doxorubicin against cancer: a review. Am J Clin Microbiol Antimicrob 1(2):1009

    Google Scholar 

  • Yao C, Zhang L, Wang J, He Yu, Xin J, Wang S, Xu H, Zhang Z (2016) Gold nanoparticle mediated phototherapy for cancer. J Nanomater 2016 (Article ID 5497136):29. https://doi.org/10.1155/2016/5497136

  • Yueying H, Yan Z, Chunhua G, Weifeng D, Meidong L (2010) Micellar carrier based on methoxy poly (ethylene glycol)-block-poly (ε-caprolactone) block copolymers bearing ketone groups on the polyester block for doxorubicin delivery. J Mater Sci - Mater Med 21(2):567–574. https://doi.org/10.1007/s10856-009-3887-x

    Article  CAS  Google Scholar 

  • Yurchenko A, Nikitina N, Sokolova V, Prylutska S, Kuziv Yu, Virych P, Chumachenko V, Kutsevol N, Ponomarenko S, Prylutskyy Yu, Epple M (2020) A novel branched copolymer-containing anticancer drug for targeted therapy: in vitro research. Bionanoscience 10:249–259. https://doi.org/10.1007/s12668-019-00700-5

    Article  Google Scholar 

  • Zalutski IV, Lukianova NY, Storchai DM, Burlaka AP, Shvets YV, Borikun TV, Todor IM, Zalutski-Lukashevich VS, Rudnichenko YA, Chekhun VF (2017) Influence of exogenous lactoferrin on the oxidant/antioxidant balance and molecular profile of hormone receptor positive and negative human breast cancer cells in vitro. Experiment Oncol 39(2):106–111

    Article  Google Scholar 

  • Zhou Q, Zhang L, Wu H (2017) Nanomaterials for cancer therapies. Nanotechnol Reviews 6(5):51. https://doi.org/10.1515/ntrev-2016-0102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This publication is supported in part by the Ministry of the Education and Science of Ukraine: joint Ukrainian-Belarusian research and development projects, Project M/70-2020 “Design and physico-chemical properties of novel multicomponent nanosystems for the treatment and diagnostics of solid tumors” and by National Research Foundation of Ukraine, Project 2020.02/0022 “Plasmon hybrid nanosystems "metal-polymer-fluorophore" with enhanced optical response for photonics and biomedical applications”.

Funding

This publication is supported in part by the Ministry of the Education and Science of Ukraine: joint Ukrainian-Belarusian research and development projects, Project M/70–2020 “Design and physico-chemical properties of novel multicomponent nanosystems for the treatment and diagnostics of solid tumors” and by National Research Foundation of Ukraine, Project 2020.02/0022 “Plasmon hybrid nanosystems "metal-polymer-fluorophore" with enhanced optical response for photonics and biomedical applications”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuliia Kuziv.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutsevol, N., Kuziv, Y., Bezugla, T. et al. Application of new multicomponent nanosystems for overcoming doxorubicin resistance in breast cancer therapy. Appl Nanosci 12, 427–437 (2022). https://doi.org/10.1007/s13204-020-01653-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01653-y

Keywords

Navigation