Skip to main content

Advertisement

Log in

Thermosensitive ternary core–shell nanocomposites of polystyrene, poly(N-isopropylacrylamide) and polyaniline

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

We demonstrate synthesis and specificity of morphology, molecular structure and properties of new thermally sensitive latexes of the ternary core–shell nanocomposites with a core of polystyrene, shell of poly(N-isopropylacrylamide) (PNIPAM) embedded with nanoparticles of polyaniline doped by camphorsulfonic acid (PANI-CSA). We find that strong physical–chemical interactions in the shell between PNIPAM and PANI-CSA cause conformational changes in PNIPAM which are similar to those occurring during the PNIPAM coil-globule transition. These changes affect thermal responsivity of the synthesized latexes and are obviously responsible for the shift of the lower critical solution temperature (LCST) of PNIPAM in the shell from 32 °C (for the binary PS/PNIPAM latex) to 34 °C [for the ternary PS/PNIPAM/PANI-CSA(8.7 wt%) latex]. The synthesized ternary nanocomposites in the thoroughly dried (not swelled) state reveal low conductivity because of occluding and incomplete doping of PANI-CSA nanoparticles in the PNIPAM phase. However, when exposure to HCl vapor the conductivity increases by ca. 6 orders of magnitude that suggests their applicability as sensing materials for detection of analytes with acidic properties. The formulated PS/PNIPAM/PANI-CSA latexes not only demonstrate temperature-dependent flow behavior but due to their optical absorption in near-infrared (NIR) spectral range, can also produce a photothermal effect, which is revealed by a time-dependent rise of their temperature under irradiation with a NIR laser at 808 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bongiovanni SA, Molina MA, Rivarola CR, Kogan MJ, Barbero CA (2014) Smart polyaniline nanoparticles with thermal and photothermal sensitivity. Nanotech 25:495602

    Google Scholar 

  • Boyer MI, Quillard S, Rebourt E, Louarn G, Buisson JP, Monkman A, Lefrant S (1998) Vibrational analysis of polyaniline: a model compound approach. J Phys Chem B 102:7382–7392

    CAS  Google Scholar 

  • Braeken Y, Cheruku S, Ethirajan A, Maes W (2017) Conjugated polymer nanoparticles for bioimaging. Materials 10:1420

    Google Scholar 

  • Cheng H, Shen L, Wu C (2006) LLS and FTIR studies on the hysteresis in association and dissociation of poly (N-isopropylacrylamide) chains in water. Macromol 39(6):2325–2329

    CAS  Google Scholar 

  • Crassous JJ, Siebenbürger M, Ballauff M, Drechsler M, Henrich J, Fuchs M (2006) Thermosensitive core-shell particles as model systems for studying the flow behavior of concentrated colloidal dispersions. J Chem Phys 125:204906

    CAS  Google Scholar 

  • Deng Z, Guo Y, Ma PX, Guo B (2018) Rapid thermal responsive conductive hybrid cryogels with shape memory properties, photothermal properties and pressure dependent conductivity. J Colloid Interf Sci 526:281–294

    CAS  Google Scholar 

  • Depa K, Strachota A, Šlouf M, Brus J, Cimrová V (2017) Synthesis of conductive doubly filled poly(N-isopropylacrylamide)-polyaniline-SiO2 hydrogels. Sens Actuators B 244:616–634

    CAS  Google Scholar 

  • Dong R, Zhao X, Guo B, Ma PX (2016) Self-healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy. ACS Appl Mater Interf 8:17138–17150

    CAS  Google Scholar 

  • Doshi M, Krienke M, Khederzadeh S, Sanchez H, Copik A, Oyer J, Gesquiere AJ (2015) Conducting polymer nanoparticles for targeted cancer therapy. RSC Adv 5:37943–37956

    CAS  Google Scholar 

  • Duracher D, Elaïssari A, Mallet F, Pichot C (2000) Adsorption of modified HIV-1 capsid p24 protein onto thermosensitive and cationic core-shell poly(styrene)-poly(N-isopropylacrylamide) particles. Langmuir 16:9002–9008

    CAS  Google Scholar 

  • Dybal J, Trchová M, Schmidt P (2009) The role of water in structural changes of poly (N-isopropylacrylamide) and poly (N-isopropylmethacrylamide) studied by FTIR, Raman spectroscopy and quantum chemical calculations. Vibr Spectr 51(1):44–51

    CAS  Google Scholar 

  • Guan G, Wu M, Han M-Y (2019) Stimuli-responsive hybridized nanostructures. Adv Funct Mater. https://doi.org/10.1002/adfm.201903439

    Article  Google Scholar 

  • Guo B, Qu J, Zhao X, Zhang M (2019) Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration. Acta Biomater 84:180–193

    CAS  Google Scholar 

  • Hrubý M, Filippov SK, Štěpánek P (2015) Smart polymers in drug delivery systems on crossroads: Which way deserves following? Eur Polym J 65:82–97

    Google Scholar 

  • Karimi M, Ghasemi A, Sahandi ZP, Rahighi R, Moosavi BSM, Mirshekari H, Amiri M, Shafaei PZ, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45(5):1457–1501

    CAS  Google Scholar 

  • Lin SY, Chen KS, Liang RC (1999) Thermal micro ATR/FT-IR spectroscopic system for quantitative study of the molecular structure of poly (N-isopropylacrylamide) in water. Polymer 40(10):2619–2624

    CAS  Google Scholar 

  • Losytskyy MY, Vretik LO, Kutsevol NV, Nikolaeva OA, Yashchuk VM (2018) Uptake of chlorin e6 photosensitizer by polystyrene-diphenyloxazole-poly(N-isopropylacrylamide) hybrid nanosystem studied by electronic excitation energy transfer. Nanoscale Res Lett 13:166

    Google Scholar 

  • Lu Y, Mei Y, Drechsler M, Ballauff M (2006) Thermosensitive core–shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew Chem Int Ed 45:813–816

    CAS  Google Scholar 

  • Lu B, Yuk H, Lin S, Jian N, Qu K, Xu J, Zhao X (2019) Pure PEDOT:PSS hydrogels. Nat Commun 10:1043

    Google Scholar 

  • Maeda Y, Higuchi T, Ikeda I (2000) Change in hydration state during the coil-globule transition of aqueous solutions of poly (N-isopropylacrylamide) as evidenced by FTIR spectroscopy. Langmuir 16(19):7503–7509

    CAS  Google Scholar 

  • Makino K, Yamamoto S, FujimotoK KH, Oshima H (1994) Surface structure of latex particles covered with temperature-sensitive hydrogel layers. J Colloid Interface Sci 166:251–258

    CAS  Google Scholar 

  • Martínez MV, Bongiovanni MA, Rivero R, Miras RC, Rivarola CR, Barbero CA (2015) Polymeric nanocomposites made of a conductive polymer and a thermosensitive hydrogel: strong effect of the preparation procedure on the properties. Polymer 78:94–103

    Google Scholar 

  • Molina MA, Rivarola CR, Barbero CA (2011) Effect of copolymerization and semi-interpenetration with conducting polyanilines on the physicochemical properties of poly(N-isopropylacrylamide) based thermosensitive hydrogels. Eur Polym J 47:1977–1984

    CAS  Google Scholar 

  • Molina M, Wedepohl S, Calderón M (2016) Polymeric near-infrared absorbing dendritic nanogels for efficient in vivo photothermal cancer therapy. Nanoscale 8:5852–5856

    CAS  Google Scholar 

  • Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed 44:7686–7708

    CAS  Google Scholar 

  • Ogurtsov NA, Noskov YV, Fatyeyeva KY, Ilyin VG, Dudarenko GV, Pud AA (2013) The deep impact of the template on molecular weight, structure and oxidation state of the formed polyaniline. J Phys Chem B 117:5306–5314

    CAS  Google Scholar 

  • Ogurtsov NA, Mikhaylov SD, Coddeville P, Wojkiewicz J-L, Dudarenko GV, Pud AA (2016a) Influence of dispersed nanoparticles on the kinetics of formation and molecular mass of polyaniline. J Phys Chem B 120:10106–10113

    CAS  Google Scholar 

  • Ogurtsov NA, NoskovYuV BVN, Ilyin VG, Wojkiewicz J-L, Fedorenko EA, Pud AA (2016b) Evolution and interdependence of structure and properties of nanocomposites of multiwall carbon nanotubes with polyaniline. J Phys Chem C 120:230–242

    CAS  Google Scholar 

  • Pana L, Yub G, Zhai D, Lee HR, Zhao W, Liu N, Wang H, Tee BC-K, Shi Y, Cui Y, Bao Z (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci USA 109:9287–9292

    Google Scholar 

  • Parrish E, Seeger SC, Composto RJ (2018) Temperature-dependent nanoparticle dynamics in poly(N-isopropylacrylamide) gels. Macromolecules 51(10):3597–3607

    CAS  Google Scholar 

  • Ping Z (1996) In situ FTIR-attenuated total reflection spectroscopic investigations on the base-acid transitions of polyaniline. Base-acid transition in the emeraldine form of polyaniline. J Chem Soc Faraday Trans 92:3063–3067

    CAS  Google Scholar 

  • Pud AA, Nikolayeva OA, Vretik LO, Noskov YV, Ogurtsov NA, Kruglyak OS, Fedorenko EA (2017) New nanocomposites of polystyrene with polyaniline doped with lauryl sulfuric acid. Nanoscale Res Lett 12:493

    CAS  Google Scholar 

  • Rivero RE, Molina MA, Rivarola CR, Barbero CA (2014) Pressure and microwave sensors/actuators based on smart hydrogel/conductive polymer nanocomposite. Sensors and Actuators B 190:270–278

    CAS  Google Scholar 

  • Schild HG (1992) Poly(n-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249

    CAS  Google Scholar 

  • Senff H, Richtering W, Norhausen C, Weiss A, Ballauff M (1999) Rheology of a temperature sensitive core-shell latex. Langmuir 15:102–106

    CAS  Google Scholar 

  • Seo YH, Cho MJ, Cheong OJ, Jang W-D, Ohulchanskyy TY, Lee S, Choi DH, Prasad PN, Kim S (2015) Low-bandgap biophotonic nanoblend: A platform for systemic disease targeting and functional imaging. Biomaterials 39:225–233

    CAS  Google Scholar 

  • Shi Y, Ma C, Peng L, Yu G (2015) Conductive “smart” hybrid hydrogels with PNIPAM and nanostructured conductive polymers. Adv Funct Mater 25:1219–1225

    CAS  Google Scholar 

  • Socrates G (1980) Infrared characteristic group frequencies. Wiley-Interscience, Chicherster

    Google Scholar 

  • Stejskal J, Bober P, Trchová M, Kovalcik A, Hodan J, Hromádková J, Prokeš J (2017) Polyaniline cryogels supported with poly(vinyl alcohol): soft and conducting. Macromol 50:3972–3978

    Google Scholar 

  • Stuart MA, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2):101–113

    Google Scholar 

  • Sun B, Lin Y, Wu P, Siesler HWA (2008) FTIR and 2D-IR spectroscopic study on the microdynamics phase separation mechanism of the poly (N-isopropylacrylamide) aqueous solution. Macromol 41(4):1512–1520

    CAS  Google Scholar 

  • Tang Q, Wu J, Sun H, Lin J, Fan S, Hu D (2008) Polyaniline/polyacrylamide conducting composite hydrogel with a porous structure. Carbohydr Polym 74:215–219

    CAS  Google Scholar 

  • Tao S, Hong B, Kerong Z (2007) An infrared and raman spectroscopic study of polyanilines co-doped with metal ions and H+. Spectrochim Acta Part A Molec and Biomolec Spectr 66:1364–1368

    Google Scholar 

  • Wei H, Cheng S-X, Zhang X-Z, Zhuo R-X (2009) Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog Polym Sci 34:893–910

    CAS  Google Scholar 

  • Xiao XC, Chu LY, Chen WM, Wang S, Xie R (2004) Preparation of submicrometer-sized monodispersed thermoresponsive core-shell hydrogel microspheres. Langmuir 20:5247–5253

    CAS  Google Scholar 

  • Yakovliev A, Vretik LO, Ziniuk R, Briks JL, Slominskii YuL, Qu L, Ohulchanskyy TY (2017) Polymeric nanoparticles loaded with organic dye for optical bioimaging in near-infrared range. In: International conference on photonics and imaging in biology and medicine, (Optical Society of America), paper W3A.108. https://doi.org/10.1364/PIBM.2017.W3A.108A

  • Yakovliev A, Ziniuk R, Wang D, Xue B, Vretik LO, Nikolaeva OA, Tan M, Chen G, Slominskii YL, Qu J, Ohulchanskyy TY (2019) Hyperspectral multiplexed biological imaging of nanoprobes emitting in the short-wave infrared region. Nanoscale Res Lett 14:243

    CAS  Google Scholar 

  • Zhang F, Wang C-C (2008) Preparation of thermoresponsive core-shell polymeric microspheres and hollow PNIPAM microgels. Colloid Polym Sci 286(8):889–895

    CAS  Google Scholar 

  • Zhou Z, Hollingsworth JV, Hong S, Wei G, Shi Y, Lu X, He C, Han CC (2014) Effects of particle softness on shear thickening of microgel suspensions. Soft Matter 10:6286–6293

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the National Natural Science Foundation of China (61875135) and Shenzhen Basic Research Project (JCYJ20170818090620324). We thank Instrumental Analysis Center of Shenzhen University (Xili campus) for providing access to TEM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Y. Ohulchanskyy or A. A. Pud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 706 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vretik, L.O., Noskov, Y.V., Ogurtsov, N.A. et al. Thermosensitive ternary core–shell nanocomposites of polystyrene, poly(N-isopropylacrylamide) and polyaniline. Appl Nanosci 10, 4951–4964 (2020). https://doi.org/10.1007/s13204-020-01424-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01424-9

Keywords

Navigation