Skip to main content
Log in

Investigation of electromagnetic and ultraviolet properties of nano-metal-coated textile surfaces

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the nanocoated textile fabric samples with Al and Zn metal materials in terms of EMI (electromagnetic interference) and UV/IR (ultraviolet/infrared) shielding properties. For this purpose, the thermal vacuum evaporation method has been utilized for coating textile fabric samples with Al and Zn coating materials. The observation of the coverage of coated fabrics is carried out by using SEM analysis. Both Zn and Al coating are found effective to improve the EMI and UV/IR shielding properties of textile samples. In addition, Zn coating is found to be more effective to improve the EMI and UV/IR shielding properties of textile fabric samples. Especially, the Zn-coated fabric samples exhibited high effective UV-A (< 420 nm wavelength) shielding property. In both fabric samples, the strong absorption frequency regions have been observed in EMI absorption analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdulkarim YI, Deng L, Altintas O, Unal E, Karaaslan M (2019) Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics. Physica E Low Dimens Syst Nanostruct 114:113593. https://doi.org/10.1016/j.physe.2019.113593

    Article  CAS  Google Scholar 

  • Akgol O, Bağmancı M, Karaaslan M, Ünal E (2017) Broad band MA-based on three-type resonator having resistor for microwave energy harvesting. J Microw Power Electromagn Energy 51(2):134–149

    Article  Google Scholar 

  • Altintas O, Aksoy M, Unal E, Akgol O, Karaaslan M (2019) Artificial neural network approach for locomotive maintenance by monitoring dielectric properties of engine lubricant. Measurement 145:678–686. https://doi.org/10.1016/j.measurement.2019.05.087

    Article  Google Scholar 

  • Chen S, Zhang S, Galluzzi M, Li F, Zhang X, Yang X et al (2019) Insight into multifunctional polyester fabrics finished by one-step eco-friendly strategy. Chem Eng J 358:634–642

    Article  CAS  Google Scholar 

  • Davis JR (ed) (2004) Handbook of thermal spray technology. ASM International, USA

    Google Scholar 

  • Drakakis E, Suchea M, Tudose V, Kenanakis G, Stratakis D, Dangakis K, Miaoudakis A, Vernardou D, Koudoumas E (2018) Zinc oxide-graphene based composite layers for electromagnetic interference shielding in the GHz frequency range. Thin Solid Films 651:152–157

    Article  CAS  Google Scholar 

  • Du Y, Huang Z, Wu S, Xiong K, Zhang X, Zheng B et al (2018) Preparation of versatile yolk-shell nanoparticles with a precious metal yolk and a microporous polymer shell for high-performance catalysts and antibacterial agents. Polymer 137:195–200

    Article  CAS  Google Scholar 

  • Du Y, Khan S, Zhang X, Yu G, Liu R, Zheng B et al (2019) In-situ preparation of porous carbon nanosheets loaded with metal chalcogenides for a superior oxygen evolution reaction. Carbon 149:144–151

    Article  CAS  Google Scholar 

  • Dubrovski PD (2010) Woven fabrics and ultraviolet protection, Chapter Fifteen, University of Maribor, Faculty of Mechanical Engineering, Slovenia

  • Esen M, İlhan İ, Karaaslan M, Ünal E, Dinçer F, Sabah C (2015) Electromagnetic absorbance properties of a textile material coated using filtered arc-physical vapor deposition method. J Ind Text 45(2):298–309

    Article  CAS  Google Scholar 

  • Hearle JWS, Morton WE (2008) Physical properties of textile fibres, 4th edn. Woodhead Publishing, Cambridge

    Google Scholar 

  • Hong YK, Lee CY, Jeong CK, Sim JH, Kim K, Joo J, Kim MS, Lee JY, Jeong SH, Byun SW (2001) Electromagnetic interference shielding characteristics of fabric complexes coated with conductive polypyrrole and thermally evaporated Ag. Curr Appl Phys 1(6):439–442

    Article  Google Scholar 

  • http://cdn.intechopen.com/pdfs/12251/InTech-Wowen_fabric_and_ultraviolet_protection.pdf. Accessed 15 May 2019

  • http://www.nptel.ac.in/courses/116102026/6. Accessed 21 July 2018

  • Joshi M, Bhattacharyya A (2011) Nanotechnology—a new route to high-performance functional textiles. Text Prog 43(3):155–233

    Article  Google Scholar 

  • Kabir H, Matthess J, Dietzel Y, Offermann P, Nocke G, Matthess K (2004) PVD-coating for the processing of textiles. Res J Text Appar 8(1):32–37

    Article  Google Scholar 

  • Knittel D, Schollmeyer E (1998) Surface structuring of synthetic polymers by UV-laser irradiation. Part IV. Applications of excimer laser induced surface modification of textile materials. Polym Int 45(1):110–117

    Article  CAS  Google Scholar 

  • Leng K, Mai W, Zhang X, Liu R, Lin X, Huang J et al (2018) Construction of functional nanonetwork-structured carbon nitride with Au nanoparticle yolks for highly efficient photocatalytic applications. Chem Commun 54(52):7159–7162

    Article  CAS  Google Scholar 

  • Li Y, Dong Y, Yang Y, Yu P, Zhang Y, Hu J et al (2018) Rational design of silver gradient for studying size effect of silver nanoparticles on contact killing. ACS Biomater Sci Eng 5(2):425–431

    Article  Google Scholar 

  • Maity S, Chatterjee A (2018) Conductive polymer-based electro-conductive textile composites for electromagnetic interference shielding: a review. J Ind Text 47(8):2228–2252

    Article  CAS  Google Scholar 

  • Mark HF (2013) Encyclopedia of polymer science and technology, concise, 3rd edn. Wiley, New Jersey

    Google Scholar 

  • Ozkan V, Yapici A, Karaaslan M, Akgol O (2019) Investigation of electromagnetic properties of glass fiber reinforced epoxy composites containing pan nanofibers with mwcnt/graphene additive. Fresenius Environ Bull 28(3):2238–2246

    CAS  Google Scholar 

  • Ozturk M, Sevim UK, Akgol O, Karaaslan M, Unal E (2019) An electromagnetic non-destructive approach to determine dispersion and orientation of fiber reinforced concretes. Measurement 138:356–367

    Article  Google Scholar 

  • Patel KK, Gade S, Anjum MM, Singh SK, Maiti P, Agrawal AK, Singh S (2019) Effect of penetration enhancers and amorphization on transdermal permeation flux of raloxifene-encapsulated solid lipid nanoparticles: an ex vivo study on human skin. Appl Nanosci. https://doi.org/10.1007/s13204-019-01004-6

    Article  Google Scholar 

  • Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov G, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19(24):245705

    Article  Google Scholar 

  • Raliya R, Avery C, Chakrabarti S, Biswas P (2017) Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation. Appl Nanosci 7(5):253–259

    Article  CAS  Google Scholar 

  • Saravanan D (2007) UV protection textile materials. AUTEX Res J 7(1):53–62

    Google Scholar 

  • Shabbir M, Mohammad F (2018) Multifunctional AgNPs@ Wool: colored, UV-protective and antioxidant functional textiles. Appl Nanosci 8(3):545–555

    Article  CAS  Google Scholar 

  • Shateri-Khalilabad M, Yazdanshenas ME, Etemadifar A (2017) Fabricating multifunctional silver nanoparticles-coated cotton fabric. Arab J Chem 10:2355–2362

    Article  Google Scholar 

  • Stempień Z, Dominiak J, Sulerzycka-Bil M (2013) Protection properties of woven fabrics against high-intensity UV radiation emitted by artificial sources. Fibre Text East Eur 2(98):96–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muharrem Karaaslan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esen, M., İlhan, İ., Karaaslan, M. et al. Investigation of electromagnetic and ultraviolet properties of nano-metal-coated textile surfaces. Appl Nanosci 10, 551–561 (2020). https://doi.org/10.1007/s13204-019-01122-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01122-1

Keywords

Navigation