Skip to main content
Log in

A rheological analysis of nanofluid subjected to melting heat transport characteristics

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

This work focuses on the characteristics of heat sink–source and melting phenomena for time-dependent Falkner–Skan flow of Cross nanofluid. Additionally, stagnation point flow features are accounted. Modeling is based on thermophoresis diffusion and Brownian moment slip mechanisms. Zero mass flux condition is used at stretchable surface. Compact form of cross fluid equations are converted to component form by employing boundary layer concept. Appropriate transformations are engaged to give rise ODEs. Moreover, system of ODEs is tackled numerically. Detailed discussion for velocity, temperature, concentration, local Nusselt and Sherwood numbers is presented through graphs. Obtained statistical data reveals that velocity of cross nanoliquid boosts for larger melting and velocity ratio parameters. Intensification in Schmidt number corresponds to rise in concentration distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(u,v\) :

Velocity components

\(x,y\) :

Space coordinates

\(U_{\text{w}} \left( {x,t} \right)\) :

Stretching velocity

\(U_{\text{e}} \left( {x,t} \right)\) :

Free stream velocity

\(a, \, b, \, m, \, c\) :

Positive constants

\(\nu\) :

Kinematics viscosity

\(n\) :

Power law index

\(\rho_{\text{f}}\) :

Fluid density

\(D_{\text{T}}\) :

Thermophoresis diffusion coefficient

\((\rho c)_{\text{f}}\) :

Heat capacity of fluid

\(T\) :

Fluid temperature

\(T_{0}\) :

Solid temperature

\(T_{\infty }\) :

Ambient fluid temperature

\(T_{\text{m}}\) :

Melting temperature

t :

Time

\(C\) :

Fluid concentration

\(C_{\text{w}}\) :

Concentration at the surface

\(C_{\infty }\) :

Ambient concentration

\(\varGamma\) :

Cross time constant

\(D_{\text{T}}\) :

Thermophoresis diffusion coefficient

\(D_{\text{B}}\) :

Brownian diffusion coefficient

\(Q_{0}\) :

Heat generation/absorption co-efficient

\(\tau\) :

Effective heat capacity ratio

\(\alpha_{\text{m}}\) :

Effective thermal diffusivity

\(s\) :

Velocity ratio parameter

\(c_{\text{p}}\) :

Specific heat

\(c_{\text{s}}\) :

Surface heat capacity

\(\lambda\) :

Fluid latent heat

\(k\) :

Thermal conductivity

\(\eta\) :

Dimensionless variable

\(\varPsi (x,y,t)\) :

Stokes stream function

\(N_{\text{t}}\) :

Thermophoresis parameter

\(A\) :

Unsteadiness parameter

\(Pr\) :

Prandtl number

\(\beta\) :

Wedge angle parameter

\(N_{\text{b}}\) :

Brownian motion parameter

\(We\) :

Local Weissenberg number

\(Q\) :

Heat generation/absorption

\(M\) :

Melting parameter

\(Sc\) :

Schmidt number

\(\tau_{\text{w}}\) :

Wall shear stress

\(f\) :

Dimensionless velocity

\(q_{\text{m}}\) :

Wall mass flux

\(q_{\text{w}}\) :

Wall heat flux

\(\theta\) :

Dimensionless temperature

\(Sh\) :

Local Sherwood number

\(C_{\text{f}}\) :

Skin fraction

\(Nu\) :

Local Nusselt number

\(\phi\) :

Dimensionless concentration

\(Re_{x}\) :

Local Reynolds number

References

  • Ellahi R, Hassan M, Zeeshan A (2015) Shape effects of nanosize particles in Cu-H2O nanofluid on entropy generation. Int J Heat Mass Transf 81:449–456

    Article  CAS  Google Scholar 

  • Gireesha BJ, Sampath Kumar PB, Mahanthesh B, Shehzad SA, Abbasi FM (2018) Nonlinear gravitational and radiation aspects in nanoliquid with exponential space dependent heat source and variable viscosity. Microgravity Sci Technol 30(3):257–264

    Article  CAS  Google Scholar 

  • Hayat T, Rashid M, Imtiaz M, Alsaedi A (2017a) MHD effects on a thermo-solutal stratified nanofluid flow on an exponentially radiating stretching sheet. J Appl Mech Tech Phys. https://doi.org/10.1134/S0021894417020043

    Article  Google Scholar 

  • Hayat T, Ijaz Khan M, Tamoor M, Waqas M, Alsaedi A (2017b) Numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface. Results Phys 7:1824–1827

    Article  Google Scholar 

  • Hayat T, Kiyani MZ, Alsaedi A, Khan MI, Ahmad I (2018) Mixed convective three-dimensional flow of Williamson nanofluid subject to chemical reaction. Int J Heat Mass Transf 127:422–429

    Article  CAS  Google Scholar 

  • Irfan M, Khan M, Khan WA (2017) Numerical analysis of unsteady 3D flow of Carreau nanofluid with variable thermal conductivity and heat source/sink. Results Phys 7:3315–3324

    Article  Google Scholar 

  • Irfan M, Khan M, Khan WA, Ayaz M (2018) Modern development on the features of magnetic field and heat sink/source in Maxwell nanofluid subject to convective heat transport. Phys Lett A 382(30):1992–2002

    Article  CAS  Google Scholar 

  • Irfan M, Khan M, Khan WA, Ahmad L (2019) Influence of binary chemical reaction with Arrhenius activation energy in MHD nonlinear radiative flow of unsteady Carreau nanofluid: dual solutions. Appl Phys A 125:179. https://doi.org/10.1007/s00339-019-2457-4

    Article  CAS  Google Scholar 

  • Khan WA, Khan M (2014) Three-dimensional flow of an Oldroyd-B nanofluid towards stretching surface with heat generation/absorption. PLoS One 9(8):e10510

    Google Scholar 

  • Khan M, Khan WA (2015) Forced convection analysis for generalized Burgers nanofluid flow over a stretching sheet. AIP Adv 5:107138

    Article  Google Scholar 

  • Khan M, Khan WA (2016a) Steady flow of Burgers’ nanofluid over a stretching surface with heat generation/absorption. J Braz Soc Mech Sci Eng 38(8):2359–2367

    Article  CAS  Google Scholar 

  • Khan M, Khan WA (2016b) MHD boundary layer flow of a power-law nanofluid with new mass flux condition. AIP Adv 6:025211

    Article  Google Scholar 

  • Khan M, Khan WA, Alshomrani AS (2016) Non-linear radiative flow of three-dimensional Burgers nanofluid with new mass flux effect. Int J Heat Mass Transf 101:570–576

    Article  CAS  Google Scholar 

  • Khan M, Irfan M, Khan WA (2017a) Numerical assessment of solar energy aspects on 3D magneto-Carreau nanofluid: a revised proposed relation. Int J Hydrogen Energy 42(34):22054–22065

    Article  CAS  Google Scholar 

  • Khan M, Irfan M, Khan WA (2017b) Impact of forced convective radiative heat and mass transfer mechanisms on 3D Carreau nanofluid: a numerical study. Eur Phys J Plus 132:517. https://doi.org/10.1140/epjp/i2017-11803-3

    Article  CAS  Google Scholar 

  • Khan M, Manzur M, Ur Rahman M (2017c) On axisymmetric flow and heat transfer of Cross fluid over a radially stretching sheet. Results Phys 7:3767–3772

    Article  Google Scholar 

  • Khan WA, Haq I, Ali M, Shahzad M, Khan M, Irfan M (2018) Significance of static–moving wedge for unsteady Falkner–Skan forced convective flow of MHD cross fluid. J Braz Soc Mech Sci. https://doi.org/10.1007/s40430-018-1390-3

    Article  Google Scholar 

  • Khan M, Irfan M, Khan WA, Sajid M (2019a) Consequence of convective conditions for flow of Oldroyd-B nanofluid by a stretching cylinder. J Braz Soc Mech Sci Eng 41:116. https://doi.org/10.1007/s40430-019-1604-3

    Article  CAS  Google Scholar 

  • Khan WA, Ali M, Sultan F, Shahzad M, Khan M, Irfan M (2019b) Numerical interpretation of autocatalysis chemical reaction for nonlinear radiative 3D flow of cross magnetofluid. Pramana J Phys 92:16. https://doi.org/10.1007/s12043-018-1678-y

    Article  CAS  Google Scholar 

  • Khan WA, Sultan F, Ali M, Shahzad M, Khan M, Irfan M (2019c) Consequences of activation energy and binary chemical reaction for 3D flow of cross-nanofluid with radiative heat transfer. J Braz Soc Mech Sci Eng 41:4. https://doi.org/10.1007/s40430-018-1482-0

    Article  CAS  Google Scholar 

  • Mahanthesh B, Gireesha BJ (2018a) Scrutinization of thermal radiation, viscous dissipation and Joule heating effects on Marangoni convective two-phase flow of Casson fluid with fluid-particle suspension. Results Phys 8:869–878

    Article  Google Scholar 

  • Mahanthesh B, Gireesha BJ (2018b) Thermal Marangoni convection in two-phase flow of dusty Casson fluid. Results Phys 8:537–544

    Article  Google Scholar 

  • Mahanthesh B, Gireesha BJ, Reddy Gorla RS, Abbasi FM, Shehzad SA (2016) Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary. J Magn Magn Mater 417:189–196

    Article  CAS  Google Scholar 

  • Mahanthesh B, Sampath Kumar PB, Gireesha BJ, Manjunatha S, Gorla RSR (2017a) Nonlinear convective and radiated flow of tangent hyperbolic liquid due to stretched surface with convective condition. Results Phys 7:2404–2410

    Article  Google Scholar 

  • Mahanthesh B, Gireesha BJ, Prasannakumara BC, Shashikumar NS (2017b) Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source. Nucl Eng Technol 49(8):1660–1668

    Article  CAS  Google Scholar 

  • Mahanthesh B, Gireesha BJ, Shashikumar NS, Shehzad SA (2017c) Marangoni convective MHD flow of SWCNT and MWCNT nanoliquids due to a disk with solar radiation and irregular heat source. Phys E Low Dimens Syst Nanostruct 94:25–30

    Article  CAS  Google Scholar 

  • Mahanthesh B, Gireesha BJ, Prasannakumara BC, Sampath Kumar PB (2017d) Magneto-thermo-Marangoni convective flow of Cu–H2O nanoliquid past an infinite disk with particle shape and exponential space based heat source effects. Results Phys 7:2990–2996

    Article  Google Scholar 

  • Mahanthesh B, Gireesha BJ, Shehzad SA, Rauf A, Sampath Kumar PB (2018a) Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition. Phys B Condens Matter 537:98–104

    Article  CAS  Google Scholar 

  • Mahanthesh B, Gireesha BJ, Shashikumar NS, Hayat T, Alsaedi A (2018b) Marangoni convection in Casson liquid flow due to an infinite disk with exponential space dependent heat source and cross-diffusion effects. Results Phys 9:78–85

    Article  Google Scholar 

  • Manzur M, Khan M, Ur Rahman M (2018) Mixed convection heat transfer to cross fluid with thermal radiation: effects of buoyancy assisting and opposing flows. Int J Mech Sci 138–139:515–523

    Article  Google Scholar 

  • Sampath Kumar PB, Gireesha BJ, Mahanthesh B, Gorla RSR (2017) Radiative nonlinear 3D flow of ferrofluid with Joule heating, convective condition and Coriolis force. Therm Sci Eng Prog 3:88–94

    Article  Google Scholar 

  • Sheikholeslami M (2018a) Numerical approach for MHD Al2O3–water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2018.09.042

    Article  Google Scholar 

  • Sheikholeslami M (2018b) New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2018.09.044

    Article  Google Scholar 

  • Sheikholeslami M, Shamlooei M (2017) Fe3O4-H2O nanofluid natural convection in presence of thermal radiation. Int J Hydrogen Energy 42(9):5708–5718

    Article  CAS  Google Scholar 

  • Sheikholeslami M, Shehzad SA (2017) Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM. Int J Heat Mass Transf 113:796–805

    Article  CAS  Google Scholar 

  • Sheikholeslami M, Bandpy MG, Ellahi R, Zeeshan A (2014) Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces. J Magn Magn Mater 369:69–80

    Article  CAS  Google Scholar 

  • Sheikholeslami M, Jafaryar M, Shafee A, Li Z (2018) Investigation of second law and hydrothermal behavior of nanofluid through a tube using passive methods. J Mol Liq 269:407–416

    Article  CAS  Google Scholar 

  • Sultan F, Khan WA, Ali M, Shahzad M, Irfan M, Khan M (2019) Theoretical aspects of thermophoresis and Brownian motion for three-dimensional flow of the cross fluid with activation energy. Pramana J Phys. https://doi.org/10.1007/s12043-018-1676-0

    Article  Google Scholar 

  • Waqas M, Farooq M, Khan MI, Alsaedi A, Hayat T, Yasmeen T (2016) Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int J Heat Mass Transf 102:766–772

    Article  Google Scholar 

  • Waqas M, Khan MI, Hayat T, Alsaedi A (2017a) Stratified flow of an Oldroyd-B nanoliquid with heat generation. Results Phys 7:2489–2496

    Article  Google Scholar 

  • Waqas M, Ijaz M, Khan T Hayat, Alsaedi A (2017b) Numerical simulation for magneto Carreau nanofluid model with thermal radiation: a revised model. Comput Methods Appl Mech Eng 324:640–653

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sultan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, W.A., Ali, M., Irfan, M. et al. A rheological analysis of nanofluid subjected to melting heat transport characteristics. Appl Nanosci 10, 3161–3170 (2020). https://doi.org/10.1007/s13204-019-01067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01067-5

Keywords

Navigation