Skip to main content

Advertisement

Log in

Preparation of carboxy-methyl cellulose-capped nanosilver particles and their antimicrobial evaluation by an automated device

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Colloidal solution of nano silver particles (AgNPs) have been prepared using carboxymethyl cellulose as the stabilizing agent and dextrose as the reducing agent. It is considered bio-friendly, as all ingredients at much higher concentrations are used on eye as medicine. AgNPs thus generated are triangular with 9.5 nm size. MIC values of AgNPs and equivalent ionic silver against different multi-drug resistant strain bacteria and yeast are determined by microdilution method. Biological parameters for nano conversion are indicated by 128–256-fold higher sensitivity. Selective range synergisms for 1/4th MIC AgNPs with battery of antimicrobial agents are indicated by automated susceptibility testing device, keeping a negative control. Much lower MICs for different resistant antibiotics in combination with AgNPs are noted for all test organisms. This indicates scope for using a tolerable concentration of nanoantimicrobials either alone or in combination with an empirically chosen antibiotic for managing surface infections of eye or skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Halim ES, Alanazi HH, Al-Deyab SS (2015) Utilization of hydroxypropyl-carboxymethyl cellulose in synthesis of silver nanoparticles. Int J Biol Macromol 75:467–473

    Article  Google Scholar 

  • Akter M, Sikder MT, Rahman MM, Ullah AKMA, Hossain KFB, Banik S et al (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16

    Article  Google Scholar 

  • Alahmadi NS, Betts JW, Heinze T, Kelly SM, Koschella A, Wadhawan JD (2018) Synthesis and antimicrobial effects of highly dispersed, cellulose-stabilized silver/cellulose nanocomposites. RSC Adv 8: 3646–3656. https://doi.org/10.1039/c7ra12280brsc.li/rsc-advances

    Article  Google Scholar 

  • Alshareef A, Laird K, Cross RBM (2017) Shape-dependent antibacterial activity of silver nanoparticles on Escherichia coli and Enterococcus faecium bacterium. Appl Surf Sci 424:310–315

    Article  Google Scholar 

  • Ansari MA, Khan AA, Cameotra SS, Alzohairy MA (2015) Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J Med Microbiol 33:101–109

    Article  Google Scholar 

  • Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, López-Quintela MA (2007) Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol 127:1701–1712

    Article  Google Scholar 

  • Chakrabarti S, Islam J, Hazarika H, Mazumder B, Raju PS, Chattopadhyay P (2018) Safety profile of silver sulfadiazine-bfgf-loaded hydrogel for partial thickness burn wounds. Cutan Ocul Toxicol 37:258–266

    Article  Google Scholar 

  • Feng He and Dongye Zhao (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41(17):6216–6221. https://doi.org/10.1021/es0705543

    Article  Google Scholar 

  • Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents Molecules 20:8856–8874. https://doi.org/10.3390/molecules20058856

    Article  Google Scholar 

  • Fung MC, Bowen DL (1996) Silver products for medical indications:risk-benefit assessment. J Toxicol Clin Toxicol 34:119–126. https://doi.org/10.3109/15563659609020246

    Article  Google Scholar 

  • Garza-Ocañas L, Ferrer DA, Burt J, Diaz-Torres LA, Ramirez Cabrera M, Rodriguez VT et al (2010) Biodistribution and long-term fate of silver nanoparticles functionalized with bovine serum albumin in rats. Metallomics 2:204–210

    Article  Google Scholar 

  • Hamouda T, Myc A, Donovan B, Shih A, Reuter J, Baker J (2001) A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol Res 156(1):1–7

    Article  Google Scholar 

  • Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:131–133

    Article  Google Scholar 

  • Hwang IS, Choi H, Kim KJ, Lee DG (2012) Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 61:1719–1726

    Article  Google Scholar 

  • Kalaivani R, Maruthupandy M, Muneeswaran T, Hameedha Beevi A, Anand M, Ramakritinan CM, Kumaraguru AK (2018) Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Front Lab Med 2:30–35

    Article  Google Scholar 

  • Kamaleddin MA (2017) Nano-ophthalmology: applications and considerations. Nanomedicine NBM 13:1459–1472. https://doi.org/10.1016/j.nano.2017.02.007

    Article  Google Scholar 

  • Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanismof silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122. https://doi.org/10.1007/s00253-009-2159-5

    Article  Google Scholar 

  • Lustosa AKMF, de Jesus Oliveira AC, Quelemes PV, Plácido A, da Silva FV, Oliveira IS et al (2017) In situ synthesis of silver nanoparticles in a hydrogel of carboxymethyl cellulose with phthalated-cashew gum as a promising antibacterial and healing agent. Int J Mol Sci. https://doi.org/10.3390/ijms18112399

    Google Scholar 

  • Maiti PK, Haldar J, Mukherjee P, Dey R (2013) Anaerobic culture on growth efficient bi-layered culture plate in a modified candle jar using a rapid and slow combustion system. Indian J Med Microbiol 31:173–176

    Google Scholar 

  • Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69(7):4278

    Article  Google Scholar 

  • Mims JL Jr (1951) Methyl cellulose solution for ophthalmic use. AMA Arch Ophthalmol 46(6):664–665. https://doi.org/10.1001/archopht.1951.01700020678008

    Article  Google Scholar 

  • Netchareonsirisuk P, Puthong S, Dubas S, Palaga T, Komolpis K (2016) Effect of capping agents on the cytotoxicity of silver nanoparticles in human normal and cancer skin cell lines. J Nanopart Res 18:322–332

    Article  Google Scholar 

  • Ordzhonikidze CG, Ramaiyya LK, Egorova EM, Rubanovich AV (2009) Genotoxic effects of silvernanoparticles on mice in vivo. Actanaturae 3:99–101

    Google Scholar 

  • PanáˇcekA SmékalováM, KilianováM PrucekR, BogdanováK VeˇceˇrováR et al (2016) Strong and nonspecific synergistic antibacterial efficiency of antibiotics combined with silver nanoparticles at very low concentrations showing no cytotoxic effect. Molecules 21:26. https://doi.org/10.3390/molecules21010026

    Article  Google Scholar 

  • Papakostas D, Rancan F, Sterry W, BlumePeytavi U (2011) Vogt A nanoparticles in dermatology. Arch Dermatol Res 303:533–550

    Article  Google Scholar 

  • Peulen TO, Wilkinson KJ (2011) Diffusion of nanoparticles in a biofilm. Environ Sci Techno l 45(8):3367–3373

    Article  Google Scholar 

  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767–2781. https://doi.org/10.2147/IJN.S24805

    Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silvernanoparticles. Nanotechnology 18(22):225103. https://doi.org/10.1088/0957-4484/18/22/225103

    Article  Google Scholar 

  • Song K, Lee S, Park T, Lee B (2009) Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J Chem Eng 26:153–155

    Article  Google Scholar 

  • Song JK, Lee K, Park HW, Hyon JY, Oh SW, Bae WK et al (2017) Efficacy of carboxymethylcellulose and hyaluronate in dry eye disease: a systematic review and meta-analysis. Korean J Fam Med 38:2–7. https://doi.org/10.4082/kjfm.2017.38.1.2

    Article  Google Scholar 

  • Tauran Y, Brioude A, Coleman AW, Rhimi M, Kim B (2013) Molecular recognition by gold, silver and copper nanoparticles. World JBiol Chem 4(3):35–63

    Article  Google Scholar 

  • Waris A, Nagpal G, Akhtar N (2014) Use of nanotechnology in ophthalmology. Am J Drug Deliv Ther 1(2):73–76

    Google Scholar 

  • Wong KKY, Liu X (2010) Silver nanoparticles-the real ‘’silver bullet’’in clinical medicine. Med Chem Commun 1:125–131. https://doi.org/10.1039/c0md00069h.%5D

    Article  Google Scholar 

  • Wright JB, Lam K, Hansen D, Burrell RE (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Inf Cont 27:344–350

    Article  Google Scholar 

  • Y.Hsin,CChen, S, Huang T, Shih P, Lai, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNKdependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179(3):130–139

    Article  Google Scholar 

  • Yan X, He B, Liu L, Qu G, Shi J, Hu L, Jiang G (2018) Antibacterial mechanism of silver nanoparticles in pseudomonas aeruginosa: proteomics approach. Metallomics 10:557–564

    Article  Google Scholar 

  • You C, Han C, Wang X, Zheng Y, Li Q, Hu X, Sun H (2012) The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39:9193–9201. https://doi.org/10.1007/s11033-012-1792-8PMID:22722996

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PKM conceived the project and designed the experiments dealing with synthesis, storage of eye tolerable AgNPs and new methods for determining anti-microbial properties. AG and RP carried out experiments dealing with synthesis, characterizations and microbiological experiments with AgNPs. MRC, AG and AS carried out the electron microscopic studies and experiments related to physical characterization of AgNPs. All authors were involved with interpretation of obtained results, preparation and editing the manuscript.

Corresponding author

Correspondence to Prasanta Kumar Maiti.

Ethics declarations

Conflict of interest

Applied for Patent in India by Prasanta Kumar Maiti; Application no. 201831009290, Date of publication 6th, April, 2018.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiti, P.K., Ghosh, A., Parveen, R. et al. Preparation of carboxy-methyl cellulose-capped nanosilver particles and their antimicrobial evaluation by an automated device. Appl Nanosci 9, 105–111 (2019). https://doi.org/10.1007/s13204-018-0914-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0914-6

Keywords

Navigation