Skip to main content

Advertisement

Log in

Inoculation with indigenous rhizobium strains increases yields of common bean (Phaseolus vulgaris L.) in northern Spain, although its efficiency is affected by the tillage system

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Common bean (Phaseolus vulgaris L.) crops hold the potential to obtain higher yields by enhancing their biological nitrogen fixation (BNF) with Rhizobium. However in contrast to other legumes, common bean has shown a lack of positive response to inoculation with Rhizobium in many cases. This has led to a limited use of rhizobial inoculants in this crop, especially in Europe. The adaptation of bacterial strains to the rhizosphere is a key factor in the success of any inoculant, especially in a promiscuous legume such as common bean. This research aimed at increasing common bean yields via inoculation with effective indigenous Rhizobium leguminosarum strains. Three highly effective strains (LCS0306, LBM1123 and ZBM1008) which were selected according to their effectiveness at BNF in hydroponic conditions were separately inoculated onto common bean in a field experiment. The experiment was carried out under three environments and three tillage systems: conventional-tillage (CONVT), no-tillage (NT) and a cover-crop (CC). The grain yield observed with seed inoculation was significantly higher than the yield obtained with uninoculated seed under CONVT and CC. However, under NT inoculation had no effect. Furthermore, under CONVT and CC, inoculation with R. leguminosarum LCS0306 produced even higher yields than those obtained in nitrogen-fertilised or control plots. This is the first attempt to explain the inoculation performance of common bean under different tillage systems in Europe. A gene–based hypothesis has been used to explain the effectiveness of indigenous common bean rhizobia as nitrogen fixers in this crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdalla M, Osborne B, Lanigan G, Forristal D, Williams M, Smith P, Jones MB (2013) Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil Use Manag 29:199–209. doi:10.1111/sum.12030

    Article  Google Scholar 

  • Aguilar OM, Riva O, Peltzer E (2004) Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. Proc Natl Acad Sci U S A 101:13548–13553. doi:10.1073/pnas.0405321101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Albareda M, Rodríguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40:2771–2779. doi:10.1016/j.soilbio.2008.07.021

    Article  CAS  Google Scholar 

  • Alguacil MM, Roldan A, Salinas-Garcia JR, Querejeta JI (2011) No tillage affects the phosphorus status, isotopic composition and crop yield of Phaseolus vulgaris in a rain-fed farming system. J Sci Food Agric 91:28–272. doi:10.1002/jsfa.4180

    Article  Google Scholar 

  • Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006. doi:10.1099/00207713-47-4-996

    Article  CAS  PubMed  Google Scholar 

  • Batish DR, Lavanya K, Singh HP, Kohli RK (2007) Phenolic allelochemicals released by chenopodium murale affect the growth, nodulation and macromolecule content in chickpea and pea. Plant Growth Regul 51:119–128. doi:10.1007/s10725-006-9153-z

    Article  CAS  Google Scholar 

  • Bizarro MJ, Giongo A, Kayser L, et al. (2011) Genetic variability of soybean bradyrhizobia populations under different soil managements. Biol Fertil Soils 47:357–362. doi:10.1007/s00374-010-0512-6

    Article  Google Scholar 

  • Buttery BR, Park SJ, Findlay WJ (1987) Growth and yield of white bean (Phaseolus vulgaris L.) in response to nitrogen, phosphorus and potassium fertilizer and to inoculation with rhizobium. Can J Plant Sci 67:425–432. doi:10.4141/cjps87-061

    Article  Google Scholar 

  • Cunningham MH, Chaney K, Bradbury RB, Wilcox A (2004) Non-inversion tillage and farmland birds: a review with special reference to UK and Europe. Ibis 146:192–202. doi:10.1111/j.1474-919X.2004.00354.x

    Article  Google Scholar 

  • Daza A, Santamaría C, Rodríguez-Navarro DN, Camacho M, Orive R, Temprano FJ (2000) Perlite as carrier for bacterial inoculants. Soil Biol Biochem 32:567–572. doi:10.1016/S0038-0717(99)00185-6

    Article  CAS  Google Scholar 

  • FAOSTAT (2015) FAOSTAT Agriculture Data. Food and Agricultural Organisation, Rome. http://faostat.fao.org. Accessed 23 April 2015

  • García-Fraile P, Mulas-García D, Peix A, Rivas R, González-Andrés F, Velázquez E (2010) Phaseolus vulgaris is nodulated in northern Spain by rhizobium leguminosarum strains harboring two nodC alleles present in American Rhizobium etli strains: biogeographical and evolutionary implications. Can J Microbiol 56:657–666. doi:10.1139/W10-048

    Article  PubMed  Google Scholar 

  • Gepts P, Debouck D (1991) Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.). In: van Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. CAB, Wallingford, pp. 7–53

    Google Scholar 

  • Graham PH (1981) Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: a review. Field Crop Res 4:93–112. doi:10.1016/0378-4290(81)90060-5

    Article  Google Scholar 

  • Howieson J, Malden J, Yates RJ, O’Hara GW (2000) Techniques for the selection and development of elite inoculant strains of rhizobium leguminosarum in southern Australia. Symbiosis 28:33–48

    Google Scholar 

  • Hughes RM, Herridge DF (1989) Effect of tillage on yield, nodulation and nitrogen fixation of soybean in far north-coastal New South Wales. Aus J Exp Agric 29:671–677. doi:10.1071/EA9890671

    Article  Google Scholar 

  • Hungria M, Loureiro MF, Mendes LC, Campo RJ, Graham PH (2005) Inoculant preparation, production and application. In: Werner D, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer, Dordretch, pp. 223–253

    Chapter  Google Scholar 

  • Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crop Res 65:151–164. doi:10.1016/S0378-4290(99)00084-2

    Article  Google Scholar 

  • Inderjit LA, Weston B, Dukec SO (2005) Challenges, achievements and opportunities in allelopathy. J Plant Intearct 1:69–81. doi:10.1080/17429140600622535

    Article  CAS  Google Scholar 

  • Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH, Wang ET, Guo BL, Chen WX, Chen WF (2015) Rhizobium sophorae sp. nov. and rhizobium sophoriradicis sp. nov., nitrogen-fixing rhizobial symbionts of the medicinal legume sophora flavescens. Int J Syst Evol Microbiol 65:497–503. doi:10.1099/ijs.0.068916-0

    Article  CAS  PubMed  Google Scholar 

  • Josephson KL, Bourque DP, Bliss FA, Pepper IL (1991) Competitiveness of KIM-5 and VIKING-1 bean rhizobia - strain by cultivar interactions. Soil Biol Biochem 23:249–253. doi:10.1016/0038-0717(91)90060-W

    Article  Google Scholar 

  • Kaschuk G, Hungria M, Andrade DS, Campo RJ (2006a) Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in southern Brazil. Appl Soil Ecol 32:210–220. doi:10.1016/j.apsoil.2005.06.008

    Article  Google Scholar 

  • Kaschuk G, Hungria M, Santos JCP, et al. (2006b) Differences in common bean rhizobial populations associated with soil tillage management in southern Brazil. Soil Tillage Res 87:205–2017. doi:10.1016/j.still.2005.03.008

    Article  Google Scholar 

  • Keller B, Baggiolini A (1954) Les stades repères dans la vegetation du blé, d’après l’échelle élaborée par freekes. Revue Romande Agriculture et Arboriculture 10:17–20

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi:10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wu L, Baddeley JA, Watson CA (2010) Models of biological nitrogen fixation of legumes. A review. Agron Sustain Dev 31:155–172. doi:10.1051/agro/2010008

    Article  CAS  Google Scholar 

  • Loureiro MF, Kaschuk G, Alberton O, et al. (2007) Soybean [Glycine max (L.) Merrill] rhizobial diversity in Brazilian oxisols under various soil, cropping, and inoculation managements. Biol Fertil Soils 43:665–674. doi:10.1007/s00374-006-0146-x

    Article  Google Scholar 

  • Mostasso L, Mostasso FL, Dias BG, Vargas MAT, Hungria M (2002) Selection of bean (Phaseolus vulgaris L.) rhizobial strains for the Brazilian cerrados. Field Crop Res 73:121–132. doi:10.1016/S0378-4290(01)00186-1

    Article  Google Scholar 

  • Mulas D, García-Fraile P, Carro L, Ramírez-Bahena MH, Casquero P, Velázquez E, González-Andrés F (2011) Distribution and efficiency of rhizobium leguminosarum strains nodulating Phaseolus vulgaris in northern Spanish soils: selection of native strains that replace conventional N fertilization. Soil Biol Biochem 43:2283–2293. doi:10.1016/j.soilbio.2011.07.018

    Article  CAS  Google Scholar 

  • Mulas D, Ramírez-Baena MH, García-Fraile P, Velázquez E, González-Andrés F (2008) Rhizobium leguminosarum is the predominant species found among rhizobia nodulating common bean (Phaseolus vulgaris L.) in León (Spain). 8th European Nitrogen Fixation Conference Gent (Belgium), pp 106

  • Oliveira JP, Galli-Terasawa LV, Enke CG, Cordeiro VK, Tavares Armstrong LC, Hungria M (2011) Genetic diversity of rhizobia in a Brazilian oxisol nodulating Mesoamerican and Andean genotypes of common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 27:643–650. doi:10.1007/s11274-010-0501-9

    Article  Google Scholar 

  • Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34:17–42

    Article  Google Scholar 

  • Rigaud J, Puppo A (1975) Indole-3-acetic acid catabolism by soybean bacterioids. J Gen Microbiol 88:223–228. doi:10.1099/00221287-88-2-223

    Article  Google Scholar 

  • Rodríguez-Navarro DN, Buendía AM, Camacho M, Lucas MM, Santamaría C (2000) Characterization of rhizobium spp. bean isolates from south-west Spain. Soil Biol Biochem 32:1601–1613. doi:10.1016/S0038-0717(00)00074-2

    Article  Google Scholar 

  • Rogel MA, Ormeño-Orrillo E, Martinez-Romero E (2011) Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 34:96–104. doi:10.1016/j.syapm.2010.11.015

    Article  PubMed  Google Scholar 

  • Rubio Pérez LM (1987) La bañeza y su Tierra, 1650–1850. Un modelo de sociedad rural leonesa. Universidad de León, León, Spain

    Google Scholar 

  • Ruffo ML, Bullock DG, Bollero GA (2004) Soybean yield as affected by biomass and N uptake of cereal rye in winter cover crop rotations. Agron J 96:800–805. doi:10.2134/agronj2004.0800

    Article  Google Scholar 

  • Saïdi S, Ramírez-Bahena MH, Santillana N, Zúñiga D, Álvarez-Martínez E, Peix A, Mhamdi R, Velázquez E (2014) Rhizobium laguerreae sp. nov. nodulates vicia faba on several continents. Int J Syst Evol Microbiol 64:242–247. doi:10.1099/ijs.0.052191-0

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) A neighbour-joining method: a new method for reconstructing phylogenetics trees. Mol Biol Evol 44:406–425

    Google Scholar 

  • Santalla M, Rodiño AP, De Ron AM (2002) Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for common bean. Theor Appl Genet 104:934–944. doi:10.1007/s00122-001-0844-6

    Article  CAS  PubMed  Google Scholar 

  • Sombrero A, De Benito A (2010) Carbon accumulation in soil. Ten-year study of conservation tillage and crop rotation in a semi-arid area of castile-Leon, Spain. Soil Tillage Res 107:64–70. doi:10.1016/j.still.2010.02.009

    Article  Google Scholar 

  • Sturz AV, Christie BR (2003) Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Tillage Res 72:107–123. doi:10.1016/S0167-1987(03)00082-5

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The clustalX windows interface: flexible strategies for multiple sequence alignement aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Urbano B, González-Andrés F, Ballesteros A (2006) Allelopathic potential of cover crops to control weeds in barley. Allelopath J 17:53–64

    Google Scholar 

  • Urchei MA, Rodrigues JD, Stone LF (2000) Growth analysis of two bean cultivars under irrigation in no tillage and the conventional tillage. Pes Agrop Bras 35:497–506. doi:10.1590/S0100-204X2000000300004

    Article  Google Scholar 

  • Vincent JM (1970) The cultivation, isolation and maintenance of rhizobia. In: Vincent JM (ed) A manual for the practical study of root-nodule. Blackwell, Oxford, pp. 1–13

    Google Scholar 

  • Wang F, Wang ET, Wu LJ, Sui XH, Li Jr Y, Chen WX (2011) Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. Int J Syst Evol Microbiol 61:2582–2588. doi:10.1099/ijs.0.026484-0

    Article  PubMed  Google Scholar 

  • Wheatley DM, Macleod DA, Jessop RS (1995) Influence of tillage treatments on N2 fixation of soybean. Soil Biol Biochem 27:571–574. doi:10.1016/0038-0717(95)98633-Y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Regional Government of Castile and Leon, project LE002B05. The Spanish Ministry of Education granted Daniel Mulas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando González-Andrés.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulas, D., Seco, V., Casquero, P.A. et al. Inoculation with indigenous rhizobium strains increases yields of common bean (Phaseolus vulgaris L.) in northern Spain, although its efficiency is affected by the tillage system. Symbiosis 67, 113–124 (2015). https://doi.org/10.1007/s13199-015-0359-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-015-0359-6

Keywords

Navigation