Skip to main content

Advertisement

Log in

Hiding in a crowd—does diversity facilitate persistence of a low-quality fungal partner in the mycorrhizal symbiosis?

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Given that arbuscular mycorrhizal (AM) fungi are not consistently beneficial to their host plants, it is difficult to explain the evolutionary persistence of this relationship. We tested the hypothesis that increasing either fungal or host biodiversity allows an AM fungus to persist on a host where it shows little benefit. We found that growing such a fungus (an isolate of Glomus custos associating with Plantago laceolata) in combination with certain fungi improved its success as measured by mtLSU DNA abundance. Increasing plant species richness facilitated the spread of this fungus as measured by spore density and fungal colonization; the role of host species richness was not as clear when looking at measures of root abundance. These results indicate that diversity in the AM symbiosis, both plant and fungal, can promote the persistence of low-quality fungi. By existing within a complex mycelial network fungal strains that show little growth benefit to their hosts have a better chance of persisting on that same host. This has the potential to promote selection for heterogeneous AM fungal communities on a small spatial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alkan N, Gadkar V, Yarden O, Kapulnik Y (2006) Analysis of quantitative interactions between two species of arbuscular mycorrhizal fungi, Glomus mosseae and G. intraradices, by real-time PCR. Appl Environ Microbiol 72:4192–4199

    Article  PubMed  CAS  Google Scholar 

  • Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13–21

    Article  PubMed  Google Scholar 

  • Brundrett MC, Piché Y, Peterson RL (1984) A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Can J Bot 62:2128–2134

    Article  Google Scholar 

  • Bücking H, Shachar-Hill Y (2005) Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytol 165:899–911

    Article  PubMed  Google Scholar 

  • Cowden CC, Peterson CJ (2009) A multi-mutualist simulation: applying biological market models to diverse mycorrhizal communities. Ecol Model 220:1522–1533

    Article  CAS  Google Scholar 

  • Denison RF, Kiers ET (2011) Life histories of symbiotic rhizobia and mycorrhizal fungi. Curr Biol 21:R775–R785

    Article  PubMed  CAS  Google Scholar 

  • Douglas AE (2008) Conflict, cheats and the persistence of symbioses. New Phytol 177:849–858

    Article  PubMed  Google Scholar 

  • Fellbaum CR, Gachomo EM, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci. doi:10.1073/pnas.1118650109

  • Fitter A (2006) Carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytol 3–6

  • Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Marinez-Romero E (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42:23–46

    Google Scholar 

  • Grman E (2012) Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93:711–718

    Article  PubMed  Google Scholar 

  • Hammer EC, Pallon J, Wallander H, Olsson PA (2011) Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiol Ecol 76:236–244

    Article  PubMed  CAS  Google Scholar 

  • Helgason T, Fitter AH (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). J Exp Bot 60:2465–2480

    Article  PubMed  CAS  Google Scholar 

  • Helgason T, Daniell T, Husband R, Fitter A, Young JP (1998) Ploughing up the wood-wide web? Nature 394:431

    Article  PubMed  CAS  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT et al (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  • Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    Article  PubMed  CAS  Google Scholar 

  • Ji BM, Bentivenga SP, Casper BB (2010) Evidence for ecological matching of whole AM fungal communities to the local plant-soil environment. Ecology 91:3037–3046

    Article  PubMed  Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749–757

    Article  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Jones MD, Smith SE (2004) Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can J Bot 1109:1089–1109

    Article  Google Scholar 

  • Kernaghan G (2005) Mycorrhizal diversity: cause and effect? Pedobiologia 49:511–520

    Article  Google Scholar 

  • Kiers ET, Denison RF (2008) Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annu Rev Ecol Evol Syst 39:215–236

    Article  Google Scholar 

  • Kiers ET, van der Heijden MGA (2006) Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. Ecology 87:1627–1636

    Article  PubMed  Google Scholar 

  • Kiers ET, Hutton MG, Denison RF (2007) Human selection and the relaxation of legume defences against ineffective rhizobia. Proc Biol Sci/R Soc 274:3119–3126

    Article  CAS  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  PubMed  CAS  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Klironomos JN, Moutoglis P, Kendrick B, Widden P (1993) A comparison of spatial heterogeneity of vesicular-arbuscular mycorrhizal fungi in two maple-forest soils. Can J Bot 71:1472–1480

    Article  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Kummel M, Salant SW (2006) The economics of mutualisms: optimal utilization of mycorrhizal mutualistic partners by plants. Ecology 87:892–902

    Article  PubMed  Google Scholar 

  • Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349

    Article  PubMed  CAS  Google Scholar 

  • Lekberg Y, Hammer EC, Olsson PA (2010) Plants as resource islands and storage units–adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiol Ecol 74:336–345

    Article  PubMed  CAS  Google Scholar 

  • Li H, Smith FA, Dickson S, Holloway RE, Smith SE (2008) Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain? New Phytol 178:852–862

    Article  PubMed  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  PubMed  CAS  Google Scholar 

  • Maron JL, Marler M, Klironomos JN, Cleveland CC (2011) Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol Lett 14:36–41

    Article  PubMed  Google Scholar 

  • Miller RM, Reinhardt DR, Jastrow JD, Url S (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23

    Article  Google Scholar 

  • Neuman E (1966) A method of estimating the total length of root in a sample. J Appl Ecol 3:139–145

    Article  Google Scholar 

  • Noë R, Hammerstein P (1995) Biological markets. Trends Ecol Evol 10:336–339

    Article  PubMed  Google Scholar 

  • Pearson J, Abbott L, Jasper D (1994) Phosphorus, soluble carbohydrates and the competition between two arbuscular mycorrhizal fungi colonizing subterranean clover. New Phytol 127:101–106

    Article  CAS  Google Scholar 

  • Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc Biol Sci/R Soc 276:4237–4245

    Article  Google Scholar 

  • Schnitzer SS, Klironomos JN, HilleRisLambers J, Kinkel LL, Reich PB, Xiao K et al (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92:296–303

    Article  PubMed  Google Scholar 

  • Schwartz MW, Hoeksema JD (1998) Specialization and resource trade: biological markets as a model of mutualisms. Ecology 79:1029–1038

    Article  Google Scholar 

  • Selosse M-A, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628

    Article  PubMed  Google Scholar 

  • Smith SE, Smith FA (2011) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, in press

  • Sýkorová Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14

    Article  PubMed  Google Scholar 

  • Thrall PH, Hochberg ME, Burdon JJ, Bever JD (2007) Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol 22:120–126

    Article  PubMed  Google Scholar 

  • Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden MG, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150

    Article  Google Scholar 

  • Verbruggen E, El Mouden C, Jansa J, Akkermans G, Bücking H, West SA, Kiers ET (2012) Spatial structure and inter-specific cooperation: theory and an empirical test using the mycorrhizal mutualism. Am Nat 179:E133–E146

    Article  PubMed  Google Scholar 

  • Wagg C, Jansa J, Schmid B, van der Heijden MGA (2011) Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol Lett 14:1001–1009

    Article  PubMed  Google Scholar 

  • West SA, Kiers ET, Pen I, Denison RF (2002) Sanctions and mutualism stability: when should less beneficial mutualists be tolerated? Science 15:830–837

    Google Scholar 

  • West SA, Griffin AS, Gardner A (2007) Evolutionary explanations for cooperation. Curr Biol 17:R661–R672

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Monika Gorzelak for invaluable help with the references, and Erik Verbruggen for critical reading the manuscript. We also thank NSERC (Discovery grant to MMH), NSF (IOS 1051397 to HB) and NWO (Vidi and Meervoud grant to ETK) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miranda M. Hart.

Additional information

MMH and ETK designed the experiment, BO collected data, JJ designed the molecular probes, JF and MMH performed the molecular and statistical analyses, MMH wrote the first draft and HB, JJ and ETK contributed substantially to revisions.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

SI Table 1

(PDF 66 kb)

SI Table 2

(PDF 57 kb)

SI Table 3

(PDF 34 kb)

SI Fig. 1

(PDF 188 kb)

SI Fig. 2

(PDF 329 kb)

SI Fig. 3

(PDF 20 kb)

SI Fig. 4

(PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hart, M.M., Forsythe, J., Oshowski, B. et al. Hiding in a crowd—does diversity facilitate persistence of a low-quality fungal partner in the mycorrhizal symbiosis?. Symbiosis 59, 47–56 (2013). https://doi.org/10.1007/s13199-012-0197-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-012-0197-8

Keywords

Navigation