Skip to main content
Log in

Optimized microwave-assisted extraction of bioflavonoids from Albizia myriophylla bark using response surface methodology

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Bioflavonoids are of great interest due to their health-benefitting properties and possible protection against certain types of diseases. A microwave-assisted extraction (MAE) method was investigated for maximum retention of total bioflavonoids from Albizia myriophylla bark (AMB). Response surface methodology (RSM) using central composite design were employed for obtaining the best possible combination of MAE process parameters including microwave power (400–900 W), liquid/solid ratio (20–40 ml/g), extraction time (20–40 min) and ethanol concentration (60–100%). Optimum conditions of extraction under which predicted maximum bioflavonoids yield of 152.74 mg QE/g DW and antioxidant activity of 75.33% in close proximity with the experimental values were: microwave power 728 W, liquid/solid ratio 24.70 ml/g, extraction time 39.86 min and ethanol concentration 70.36%. Satisfactory statistical parameters (R2), ANOVA for the model and lack-of-fit testing provided an adequate mathematical description of the MAE of bioflavonoids with high antioxidant activity. Therefore, MAE of AMB using RSM could be termed as a time-saving and an efficient method resulting to high yield with increased antioxidant activity. Also, HPLC analysis of AMB revealed the presence of bioflavonoids viz., naringin, quercetin and apigenin; which may be further extensively studied for use as therapeutics against various health issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alam MN, Bristi NJ, Rafiquzzaman M (2013) Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J 21:143–152

    Article  Google Scholar 

  • Bag GC, Devi PG, Bhaigyabati T (2015) Assessment of Total Flavonoid content and antioxidant activity of methanolic rhizome extract of three Hedychium species of Manipur valley. Int J Pharm Sci Rev Res 30:154–159

    Google Scholar 

  • Bakasataea N, Kunworaratha N, Yupanquib CT, Voravuthikunchaic SP, Joycharat N (2018) Bioactive components, antioxidant, and anti-inflammatory activities of the wood of Albizia myriophylla. Rev Bras Farmacogn 28:444–450

    Article  Google Scholar 

  • Ballard TS, Mallikarjunan P, Zhou K, O’Keefe S (2010) Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem 120:1185–1192

    Article  CAS  Google Scholar 

  • Barbero GF, Liazid A, Palma M, Barroso CG (2008) Ultrasound-assisted extraction of capsaicinoids from peppers. Talanta 75:1332–1337

    Article  CAS  Google Scholar 

  • Bas D, Boyaci IH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78:836–845

    Article  CAS  Google Scholar 

  • Chen Y, Xie MY, Gong XF (2007) Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. J Food Eng 81:162–170

    Article  CAS  Google Scholar 

  • Gao M, Song BZ, Liu CZ (2006) Dynamic microwave-assisted extraction of flavonoids from Saussurea medusa maxim cultured cells. Biochem Eng J 32:79–83

    Article  CAS  Google Scholar 

  • Giannuzzo AN, Boggetti HJ, Nazareno MA, Mishima HT (2003) Supercritical fluids extraction of naringin from the peel of Citrus paradise. Phytochem Anal 14:221–223

    Article  CAS  Google Scholar 

  • Hayat K, Hussain S, Abbas S, Farooq U, Ding B, Xia S, Jia C, Zhang X, Xia W (2009) Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep Purif Technol 70:63–70

    Article  CAS  Google Scholar 

  • Huma Z, Vian MA, Maingonnat JF, Chemat F (2009) Clean recovery of antioxidant flavonoids from onions: Optimising solvent free microwave extraction method. J Chromatogr A 1216:7700–7707

    Article  Google Scholar 

  • Joycharat N, Thammavong S, Limsuwan S, Homlaead S, Voravuthikunchai SP, Yingyongnarongkul B (2013) Antibacterial substance from Albizia myriophylla wood against cariogenic Streptococcus mutans. Arch Pharm Res 36:723–730

    Article  CAS  Google Scholar 

  • Kale A, Gawande S, Kotwal S (2008) Cancer phytotherapeutics: role for flavonoids at the cellular level. Phytother Res 22:567–577

    Article  CAS  Google Scholar 

  • Karazhiyan H, Razavi S, Phillips GO (2011) Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocoll 25:915–920

    Article  CAS  Google Scholar 

  • Lee HS (2000) HPLC analysis of phenolic compounds. In: Nollet LML (ed) Food analysis by HPLC, 2nd edn, Revised and Expanded. Marcel Dekker Inc., New York, pp 775–824

    Google Scholar 

  • Lotito SB, Zhang WJ, Yang CS, Crozier A, Frei B (2011) Metabolic conversion of dietary flavonoids alters their anti-inflammatory and antioxidant properties. Free Radic Biol Med 51:454–463

    Article  CAS  Google Scholar 

  • Luque de Castro MD, Tena MT (1996) Strategies for supercritical fluid extraction of polar and ionic compounds. Trends Anal Chem 15:32–37

    Article  CAS  Google Scholar 

  • Mangang KCS, Deka SC (2018) Bioflavonoids from Albizia myriophylla: its immunomodulatory effects. In: Aguilar CN, Carvajal-Millan E (eds) Applied food science and engineering with industrial applications. International Apple Academic Press Inc, Taylor and Francis Group, Boca Raton, pp 139–158

    Google Scholar 

  • Mangang KCS, Das AJ, Deka SC (2017a) Comparative shelf life study of two different rice beers prepared using wild-type and established microbial starters. J Inst Brew 123:579–586

    Article  CAS  Google Scholar 

  • Mangang KCS, Das AJ, Deka SC (2017b) Shelf-life improvement of rice beer by incorporation of Albizia myriophylla extracts. J Food Process Preserv. https://doi.org/10.1111/jfpp.12990

    Article  Google Scholar 

  • Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    CAS  PubMed  Google Scholar 

  • Saewan N, Jimtaisong A (2013) Photoprototection of natural flavonoids. J Appl Pharm Sci 3:129–136

    Google Scholar 

  • Spigno G, Faveri DMD (2009) Microwave-assisted extraction of tea phenols: a phenomenological study. J Food Eng 93:210–217

    Article  CAS  Google Scholar 

  • Yang R, Yuan BC, Ma YS, Zhou S, Liu Y (2017) The anti-inflammatory activity of locorice, a widely used Chinese herb. Pharm Biol 55:5–18

    Article  CAS  Google Scholar 

  • Zekovic Z, Vladic J, Vidovic S, Adamovic D, Pavlic B (2016) Optimization of microwave-assisted extraction (MAE) of coriander phenolic antioxidants–response surface methodology approach. J Sci Food Agric 96:4613–4622

    Article  CAS  Google Scholar 

  • Zhang Z, Li D, Wang L, Ozkan N, Chen XD, Mao Z, Yang H (2007) Optimization of ethanol-water extraction of lignans from flaxseed. Sep Purif Technol 57:17–24

    Article  CAS  Google Scholar 

  • Zhang B, Yang R, Liu C (2008) Microwave-assisted extraction of chlorogenic acid from flower buds of Lonicera japonica Thunb. Sep Purif Technol 62:480–483

    Article  CAS  Google Scholar 

  • Zhang HF, Yang XH, Wang Y (2011) Microwave assisted extraction of secondary metabolites fromplants: current status and future directions. Trends Food Sci Technol 22:672–688

    Article  CAS  Google Scholar 

  • Zhang J, Sun C, Yan Y, Chen Q, Luo F, Zhu X, Li X, Chen K (2012) Purification of naringin and neohesperidin from Huyou (Citrus changshanensis) fruit and their effects on glucose consumption in human HepG2 cells. Food Chem 135:1471–1478

    Article  CAS  Google Scholar 

  • Zhang G, Hu M, He L, Fu P, Wang L, Zhou J (2013) Optimization of microwave-assisted enzymatic extraction of polyphenols from waste peanut shells and evaluation of its antioxidant and antibacterial activities in vitro. Food Bioprod Process 91:158–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Chandra Deka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangang, K.C.S., Chakraborty, S. & Deka, S.C. Optimized microwave-assisted extraction of bioflavonoids from Albizia myriophylla bark using response surface methodology. J Food Sci Technol 57, 2107–2117 (2020). https://doi.org/10.1007/s13197-020-04246-3

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-020-04246-3

Keywords

Navigation