Skip to main content
Log in

QSAR studies of the antioxidant activity of anthocyanins

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Through experimental information available from antioxidant assays of seventeen anthocyanins, and six common anthocyanidins, quantitative structure–activity relationships (QSAR) have been established in the present work. The antioxidant bioactivity has been predicted in three different lipid environments: emulsified and bulk oil (methyl linoleate) (in vitro tests) at concentrations of 50 and 250 μM, and 50 μM of the inhibitor, respectively, and in human LDL (low-density lipoprotein; “bad cholesterol”) (ex vivo test) at concentrations of 2.5, 10, and 25 μM of the inhibitor. Radical scavenging activity was predicted in the assay with the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·). The QSAR models developed for each test and concentration used allowed to obtain prospective information on the constitutional and topological molecular characteristics for anthocyanin/anthocyanidin compounds. Therefore, the antioxidant activity was predicted for twenty-one compounds with unknown experimental values, leading for some of them to a favorable predicted bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ACD/ChemSketch (2016) www.acdlabs.com

  • Bentz EN, Pomilio AB, Lobayan RM (2017) Donor–acceptor interactions as descriptors of the free radical scavenging ability of flavans and catechin. Comput Theor Chem 1110:14–24

    Article  CAS  Google Scholar 

  • Bonesi M, Leporini M, Tenuta MC, Tundis R (2019) The role of anthocyanins in drug discovery: recent developments. Curr Drug Discov Technol. https://doi.org/10.2174/1570163816666190125152931

    Article  PubMed  Google Scholar 

  • Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuz’min VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha A (2014) QSAR modeling: Where have you been? Where are you going to? J Med Chem 57:4977–5010

    Article  CAS  Google Scholar 

  • Chirico N, Gramatica P (2012) Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J Chem Inf Model 52:2044–2058

    Article  CAS  Google Scholar 

  • de Sousa Moraes LF, Sun X, Peluzio MDCG, Zhu MJ (2019) Anthocyanins/anthocyanidins and colorectal cancer: What is behind the scenes? Crit Rev Food Sci Nutr 59:59–71

    Article  Google Scholar 

  • Du H, Lai L, Wang F, Sun W, Zhang L, Li X, Wang L, Jiang L, Zheng Y (2018) Characterisation of flower colouration in 30 Rhododendron species via anthocyanin and flavonol identification and quantitative traits. Plant Biol (Stuttg) 20:121–129

    Article  CAS  Google Scholar 

  • Duchowicz PR (2018) Linear regression QSAR models for Polo-Like Kinase-1 Inhibitors. Cells 7:1–11

    Article  Google Scholar 

  • Duchowicz PR, Castro EA, Fernández FM (2006) Alternative algorithm for the search of an optimal set of descriptors in QSAR-QSPR studies. MATCH Commun Math Comput Chem 55:179–192

    CAS  Google Scholar 

  • Epi Suite 4.11 (2018) https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface

  • Fujiwara Y, Kono M, Ito A, Ito M (2018) Anthocyanins in Perilla plants and dried leaves. Phytochemistry 147:158–166

    Article  CAS  Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  CAS  Google Scholar 

  • He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187

    Article  CAS  Google Scholar 

  • Hong H, Xie Q, Ge W, Qian F, Fang H, Shi L, Su Z, Perkin R, Tong W (2008) Mold(2), molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J Chem Inf Model 48:1337–1344

    Article  CAS  Google Scholar 

  • Jaganath IB, Crozier A (2010) Dietary flavonoids and phenolic compounds. In: Fraga CG (ed) Plant phenolics and human health: biochemistry, nutrition, and pharmacology. Wiley, Hoboken

    Google Scholar 

  • Jiang X, Li X, Zhu C, Sun J, Tian L, Chen W, Bai W (2019) The target cells of anthocyanins in metabolic syndrome. Crit Rev Food Sci Nutr 59:921–946

    Article  CAS  Google Scholar 

  • Kähkönen MP, Heinonen M (2003) Antioxidant activity of anthocyanins and their aglycons. J Agric Food Chem 51:628–633

    Article  Google Scholar 

  • Kaurinovic B, Vastag D (2019) Flavonoids and phenolic acids as potential natural antioxidants. intechopen. Open access peer-reviewed chapter—online first. https://doi.org/10.5772/intechopen.83731. https://www.intechopen.com/online-first/flavonoids-and-phenolic-acids-as-potential-natural-antioxidants. Accessed 10 June 2019

    Google Scholar 

  • Khan MS, Ali T, Kim MW, Jo MH, Chung JI, Kim MO (2019) Anthocyanins improve hippocampus-dependent memory function and prevent neurodegeneration via JNK/Akt/GSK3β signaling in LPS-treated adult mice. Mol Neurobiol 56:671–687

    Article  CAS  Google Scholar 

  • Krga I, Milenkovic D (2019) Anthocyanins: from sources and bioavailability to cardiovascular-health benefits and molecular mechanisms of action. J Agric Food Chem 67:1771–1783

    Article  CAS  Google Scholar 

  • Lavine BK, Davidson CE, Breneman C, Katt W, Sundling CM (2003) Electronic van der Waals surface property descriptors and genetic algorithms for developing structure-activity correlations in olfactory databases. J Chem Inf Comput Sci 43:1890–1905

    Article  CAS  Google Scholar 

  • Li S, Wu B, Fu W, Reddivari L (2019) The anti-inflammatory effects of dietary anthocyanins against ulcerative colitis. Int J Mol Sci. https://doi.org/10.3390/ijms20102588

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma X, Ning S (2019) Cyanidin-3-glucoside attenuates the angiogenesis of breast cancer via inhibiting STAT3/VEGF pathway. Phytother Res 33:81–89

    Article  CAS  Google Scholar 

  • Matlab 7.6 http://www.mathworks.com

  • Mercader AG, Duchowicz PR, Fernández FM, Castro EA (2010) Replacement method and enhanced replacement method versus the genetic algorithm approach for the selection of molecular descriptors in QSPR/QSAR Theories. J Chem Inf Model 50:1542–1548

    Article  CAS  Google Scholar 

  • Mercader AG, Duchowicz PR, Sivakumar PM (eds) (2016) Chemometrics applications and research: QSAR in medicinal chemistry. CRC Press, Boca Raton

    Google Scholar 

  • Miguel MG (2011) Anthocyanins: antioxidant and/or anti-inflammatory activities. J Appl Pharm Sci 1:7–15

    Google Scholar 

  • PaDEL (2016). http://www.yapcwsoft.com/dd/padeldescriptor

  • Pomilio AB, Mercader AG (2017) Natural acylated anthocyanins and other related flavonoids: structure elucidation of Ipomoea cairica compounds and QSAR studies including multidrug resistance. In: Atta-ur-Rahman D (ed) Studies in natural products chemistry. (Bioactive natural products). Elsevier, The Netherlands, pp 291–321

    Google Scholar 

  • Roy K, Chakraborty P, Mitra I, Ojha PK, Kar S, Das RN (2013) Some case studies on application of ‘‘r2 m’’ metrics for judging quality of Quantitative Structure-Activity Relationship predictions: emphasis on scaling of response data. J Comput Chem 34:1071–1082

    Article  CAS  Google Scholar 

  • Roy K, Kar S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chemom Intell Lab Syst 145:22–29

    Article  CAS  Google Scholar 

  • Sakuta M (2014) Diversity in plant red pigments: anthocyanins and betacyanins. Plant Biotechnol Rep 8:37–48

    Article  Google Scholar 

  • Sousa A, Araújo P, Azevedo J, Cruz L, Fernandes I, Mateus N, de Freitas V (2016) Antioxidant and antiproliferative properties of 3-deoxyanthocyanidins. Food Chem 192:142–148

    Article  CAS  Google Scholar 

  • Thankam Finosh G, Jayabalan M (2013) Reactive oxygen species—control and management using amphiphilic biosynthetic hydrogels for cardiac applications. Adv Biosci Biotechnol 4:1134–1146

    Article  Google Scholar 

  • Tsakiroglou P, VandenAkker NE, Del Bo’ C, Riso P, Klimis-Zacas D (2019) Role of berry anthocyanins and phenolic acids on cell migration and angiogenesis: an updated overview. Nutrients. https://doi.org/10.3390/nu11051075

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullah R, Khan M, Shah SA, Saeed K, Kim MO (2019) Natural antioxidant anthocyanins—a hidden therapeutic candidate in metabolic disorders with major focus in neurodegeneration. Nutrients. https://doi.org/10.3390/nu11061195

    Article  PubMed  PubMed Central  Google Scholar 

  • Valdes-Martini JR, García Jacas CR, Marrero-Ponce Y, Silveira Vaz‘d Almeida Y, Morrel C (2012) Versión 1.0. CAMD-BIR Unit, CENDA Number of register: 2373-2012

  • Vishnu VR, Renjith RS, Mukherjee A, Anil SR, Sreekumar J, Jyothi AN (2019) Comparative study on the chemical structure and in vitro antiproliferative activity of anthocyanins in purple root tubers and leaves of sweet potato (Ipomoea batatas). J Agric Food Chem 67:2467–2475

    Article  CAS  Google Scholar 

  • Vitale AA, Bernatene EA, Vitale MG, Pomilio AB (2016) New insights of the Fenton reaction using glycerol as experimental model. Effect of O2, inhibition by Mg2+, and oxidation state of Fe. J Phys Chem A 120:5435–5445

    Article  CAS  Google Scholar 

  • Wongwichai T, Teeyakasem P, Pruksakorn D, Kongtawelert P, Pothacharoen P (2019) Anthocyanins and metabolites from purple rice inhibit IL-1β-induced matrix metalloproteinases expression in human articular chondrocytes through the NF-κB and ERK/MAPK pathway. Biomed Pharmacother 112:108610

    Article  CAS  Google Scholar 

  • Zhang ZC, Zhou Q, Yang Y, Wang Y, Zhang JL (2019) Highly acylated anthocyanins from purple sweet potato (Ipomoea batatas L.) alleviate hyperuricemia and kidney inflammation in hyperuricemic mice: possible attenuation effects on allopurinol. J Agric Food Chem 67:6202–6211

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Scientific and Technical Research Council of Argentina [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina] (PIP0311) and Universidad de Buenos Aires (Argentina) for financial support; and Secretaría de Ciencia, Tecnología e Innovación Productiva (formerly Ministerio de Ciencia, Tecnología e Innovación Productiva) for electronic library facilities. N.A.S. thanks the Scientific Research Comission [Comisión de InvestigacionesCientíficas (CIC), La Plata city, Argentina] for a fellowship. A.B.P. and P.R.D. are Research Members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo R. Duchowicz.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duchowicz, P.R., Szewczuk, N.A. & Pomilio, A.B. QSAR studies of the antioxidant activity of anthocyanins. J Food Sci Technol 56, 5518–5530 (2019). https://doi.org/10.1007/s13197-019-04024-w

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-019-04024-w

Keywords

Navigation