Skip to main content
Log in

Factors influencing anthocyanin loss during nixtamalization of blue purple maize grain

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Blue purple maize grain loses a great amount of anthocyanins during the nixtamalization processing. The impact of the process factors on anthocyanins losses has not been studied in detail. The objectives of this work were to: (1) determine the step of the nixtamalization procedure where the greatest anthocyanin loss occurs and (2) study the effect of cooking time, alkali concentration, and sample size on anthocyanin losses (AL), and on the color of masa and tortilla from blue purple maize grain. Two cooking times were assayed (25 and 35 min), three alkali concentrations (0.5, 0.7, and 1.0% w/w), and two maize grain sample sizes (100 and 1000 g). Alkali concentration determines the time required to solubilize the maize grain pericarp, higher concentrations resulted in shorter maize grain pericarp solubilization times and this variable was related with AL. The greatest AL occurred during the grain cooking step, but an additional loss took place during the steeping of cooked grain. For the cooking time of 25 min, AL were of 38.3% during the cooking step, and 21.3% during the steeping of cooked grain. The cooking time had no effect (p > 0.05) on AL in masa and tortilla whereas alkali concentration and sample size significantly affected it. The greater the concentration and size, the higher the AL. The color of masa and tortilla were affected by cooking time and alkali concentration. Increasing alkali concentration during the nixtamalization procedure, reduced the brightness and chroma of masa and tortilla and made these products seem darker and dull.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Aal ESM, Hucl P (1999) A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem 76:350–354

    Article  CAS  Google Scholar 

  • Almeida-Domínguez HD, Suhendro EL, Rooney LW (1997) Corn alkaline cooking properties related to grain characteristics and viscosity (RVA). J Food Sci 3:516–519

    Article  Google Scholar 

  • Bedolla S, Rooney LW (1982) Cooking maize for masa production. Cereal Foods World 27:219–221

    Google Scholar 

  • Bedolla S, De Palacios MG, Rooney LW, Diehl KC, Khan MN (1983) Cooking characteristics of sorghum and corn for tortilla preparation by several cooking methods. Cereal Chem 60:263–268

    Google Scholar 

  • Castañeda-Ovando A, Pacheco-Hernandez ML, Paez-Hernandez ME, Rodriguez JA, Galan-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871

    Article  Google Scholar 

  • Collison A, Yang L, Dykes L, Murray S, Awika JM (2015) Influence of genetic background on anthocyanin and copigment composition and behavior during thermoalkaline processing of maize. J Agric Food Chem 63:5528–5538

    Article  CAS  Google Scholar 

  • Cortés GA, Salinas MY, San Martín-Martínez E, Martínez-Bustos F (2006) Stability of anthocyanins of blue maize (Zea mays L.) after nixtamalization of separeted pericarp-germ tip cap and endosperm fractions. J Cereal Sci 43:57–62

    Article  Google Scholar 

  • De la Parra C, Serna-Saldivar SO, Liu RH (2007) Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas, and tortilla chips. J Agric Food Chem 55:4177–4183

    Article  Google Scholar 

  • Del Pozo-Insfran D, Brenes CH, Serna-Saldivar SO, Talcott ST (2006) Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Res Int 39:696–703

    Article  Google Scholar 

  • Fernández-Muñoz JL, Acosta-Osorio AA, Gruintal-Santos MA, Zelaya-Angel O (2011) Kinetics of water diffusion in corn grain during the alkaline cooking at different temperatures and calcium hydroxide concentration. J Food Eng 106:60–64

    Article  Google Scholar 

  • González R, Reguera E, Mendoza L, Figueroa JM, Sánchez-Sinencio F (2004) Physicochemical changes in the hull of corn grains during their alkaline cooking. J Agric Food Chem 52:3831–3837

    Article  Google Scholar 

  • Guiomar MJ, Lito HM, Filomena M, Camoes JFC, Corington AK (1998) Equilibrium in saturated Ca(OH)2 solutions: parameters and dissociation constants. J Solut Chem 27:925–933

    Article  CAS  Google Scholar 

  • Halstead PE, Moore AE (1957) The thermal dissociation of calcium hydroxide. J Chem Soc 769:3873

    Article  Google Scholar 

  • INEGI (2012). http://www.inegi.org.mx/est/contenidos/proyEctos/encuestas/hogares/regulares/enigh/enigh2010/ncv/default.aspx. Accessed 12 Sept 2012

  • Kara S, Ercelebi EA (2013) Thermal degradation kinetics of anthocyanins and visual colour of Urmu mulberry (Morus nigra L.). J Food Eng 116:541–547

    Article  CAS  Google Scholar 

  • Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions and methods for their quantification. Toxicol Pathol 30:620–650

    Article  CAS  Google Scholar 

  • Li W, Beta T (2011) Flour and bread from black-, purple-, and blue-colored wheats. In: Preedy V, Watson R, Patel V (eds) Flour and breads and their fortification in health and disease prevention. Chapter 6. Academic Press, Cambridge, pp 59–67

    Chapter  Google Scholar 

  • Liu Q, Qiu Y, Beta T (2010) Comparison of antioxidant activities of different colored wheat grains and analysis of phenolic compounds. J Agric Food Chem 55:4177–4183

    Google Scholar 

  • Lopez-Martinez LX, Parkin KL, Garcia HS (2011) Phase II-inducing, polyphenols content and antioxidant capacity of corn (Zea mays L.) from phenotypes of white, blue, red and purple colors processed into masa and tortillas. Plant Foods Hum Nutr 66:41–47

    Article  CAS  Google Scholar 

  • Martínez-Herrera ML, Lachance PA (1979) Corn (Zea mays) kernel hardness as an index of the alkaline cooking time for tortilla preparation. J Food Sci 44:377–380

    Article  Google Scholar 

  • Meyers KJ, Rudolf JL, Mitchell AE (2008) Influence of dietary quercetin on glutathione redox status in mice. J Agric Food Chem 56:830–836

    Article  CAS  Google Scholar 

  • Moreno SY, Salas SG, Rubio HD, Ramos LN (2005) Characterization of anthocyanin extracts from maize kernels. J Chromatogr Sci 43:1–6

    Article  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  CAS  Google Scholar 

  • Sadilova E, Stintzing FC, Carle R (2006) Thermal degradation of acylated and nonacylated anthocyanins. J Food Sci 71:C504–C512

    Article  CAS  Google Scholar 

  • Sahai D, Mua JP, Surjewan I, Buendia MO, Rowe M, Jackson DS (2001) Alkaline processing (nixtamalization) of white mexican corn hybrids for tortilla production: significance of corn physiological characteristics and process conditions. Cereal Chem 78:116–120

    Article  CAS  Google Scholar 

  • Salinas MY, Soto HM, Martínez BF, González HV, Ortega PR (1999) Análisis de antocianinas en maíces de grano azul y rojo provenientes de cuatro razas. Rev Fitotec Mex 22:161–174

    Google Scholar 

  • Salinas MY, Soto HM, Martínez-Bustos F, Ortega PR, Arellano-Vázquez JL (2003) Effect of alkaline cooking process on anthocyanins in pigmented maize grain. Agrociencia 37:617–628

    Google Scholar 

  • Salinas-Moreno Y, Pérez-Alonso JJ, Vázquez-Carrillo G, Aragón-Cuevas F, Velázquez-Cardelas GA (2012) Anthocyanin content and antioxidant activity of maize grain (Zea mays L.) from the races Chalqueño, Elotes Cónicos, and Bolita. Agrociencia 47:815–825

    Google Scholar 

  • Sánchez-Madrigal MA, Quintero-Ramos AF, Martínez-Bustos F, Meléndez-Pizarro CO, Ruiz-Gutiérrez MG, Camacho-Dávila A, Torres-Chávez PI, Ramírez-Wong B (2014) Effect of different calcium sources on the bioactive compounds stability of extruded and nixtamalized blue maize flours. J Food Sci Technol 52:2701–2710

    Article  Google Scholar 

  • SAS version 9.3 (2011) Statistical analysis system. Institute Inc., 2nd edn. Cary, NC. USA

  • Zazueta C, Ramos G, Fernández-Muñoz JL, Rodríguez ME, Acevedo-Hernández G, Pless RC (2002) A radioisotopic study of the entry of calcium ion into the maize kernel during nixtamalization. Cereal Chem 79:500–503

    Article  CAS  Google Scholar 

  • Zazueta-Morales JJ, Martínez-Bustos F, Jacobo-Valenzuela N, Ordorica-Falomir C, Paredes-López O (2001) Effect of addition of calcium hydroxide on some characteristics of extruded products from blue maize (Zea mays L.) using response surface methodology. J Sci Food Agric 81:1379–1386

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Salinas Moreno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salinas Moreno, Y., Jaime Fonseca, M.R., Díaz-Ramírez, J.L. et al. Factors influencing anthocyanin loss during nixtamalization of blue purple maize grain. J Food Sci Technol 54, 4493–4500 (2017). https://doi.org/10.1007/s13197-017-2932-x

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2932-x

Keywords

Navigation