Skip to main content
Log in

Property of logistic data exposed with Gompertz model and resistance to noise in actual data

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A property of data on the exact solution of the logistic curve model was exposed by behavior of upper limits estimated with an unsuitable model (the Gompertz curve model). The property is that the upper limits estimated with the Gompertz curve model for logistic data change with the downward convex for the data as the data size increases, i.e., time elapses. This contributes to identifying a suitable model because the behavior is independent of noise included in actual data. A suitable model is indispensable for correct forecasts. The property was proved and the proof was accomplished thanks to difference equations that have exact solutions. Moreover, we analyzed how resistant the downward convex and monotonic decrease of the estimated upper limit were to noise included in actual data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aggrey, S.: Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poult. Sci. 81(12), 1782–1788 (2002)

    Article  Google Scholar 

  2. Chu, W.L., Wu, F.S., Kao, K.S., Yen, D.C.: Diffusion of mobile telephony: an empirical study in Taiwan. Telecommun. Policy 33(9), 506–520 (2009)

    Article  Google Scholar 

  3. Franses, P.H.: A method to select between Gompertz and logistic trend curves. Technol. Forecast. Soc. Change 46(1), 45–49 (1994)

    Article  Google Scholar 

  4. Gregg, J., Hossel, C., Richardson, J.: Mathematical trend curves, an aid to forecasting. ICI Monograph 1. Oliver and Boyd (1964)

  5. Gupta, R., Jain, K.: Diffusion of mobile telephony in India: an empirical study. Technol. Forecast. Soc. Change 79(4), 709–715 (2012)

    Article  Google Scholar 

  6. Hirota, R.: Nonlinear partial difference equations. V. nonlinear equations reducible to linear equations. J. Phys. Soc. Jpn. 46(1), 312–319 (1979)

    Article  Google Scholar 

  7. Hirota, R.: Lecture on discrete equations. Saiensu-sha (2000) (in Japanese)

  8. Hirota, R., Takahashi, D.: Discrete and Ultradiscrete Systems. Kyoritsushuppan (2003) (in Japanese)

  9. Knízetová, H., Hyánek, J., Kníze, B., Roubícek, J.: Analysis of growth curve of fowl. I. chickens. Br. Poult. Sci. 32(5), 1027–1038 (1991)

    Article  Google Scholar 

  10. Kucharavy, D., Guio, R.D.: Application of logistic growth curve. Proc. Eng. 131, 280–290 (2015)

    Article  Google Scholar 

  11. Lechman, E.: ICT Diffusion in Developing Countries: Towards a New Concept of Technological Takeoff. Springer, Berlin (2015)

    Book  Google Scholar 

  12. Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)

    Article  MathSciNet  Google Scholar 

  13. Mar-Molinero, C.: Tractors in Spain: a logistic analysis. J. Oper. Res. Soc. 31(2), 141–152 (1980)

    Article  Google Scholar 

  14. Martino, J.P.: A review of selected recent advances in technological forecasting. Technol. Forecast. Soc. Change 70(8), 719–733 (2003)

    Article  Google Scholar 

  15. Meade, N.: The use of growth curves in forecasting market development-a review and appraisal. J. Forecast. 3(4), 429–451 (1984)

    Article  Google Scholar 

  16. Mitsuhashi, T.: Software quality assurance—approach to statistical control. JUSE (1981) (in Japanese)

  17. Morisita, M.: The fitting of the logistic equation to the rate of increase of population density. Res. Popul. Ecol. 7(1), 52–55 (1965)

    Article  Google Scholar 

  18. Narinc, D., Karaman, E., Firat, M.Z., Aksoy, T.: Comparison of non-linear growth models to describe the growth in Japanese quail. J. Anim. Vet. Adv. 9(14), 1961–1966 (2010)

    Article  Google Scholar 

  19. Nguimkeu, P.: A simple selection test between the Gompertz and logistic growth models. Technol. Forecast. Soc. Change 88(1), 98–105 (2014)

    Article  Google Scholar 

  20. Roush, W., Branton, S.: A comparison of fitting growth models with a genetic algorithm and nonlinear regression. Poult. Sci. 84(3), 494–502 (2005)

    Article  Google Scholar 

  21. Satoh, D.: A discrete Gompertz equation and a software reliability growth model. IEICE Trans. E83–D(7), 1508–1513 (2000)

    Google Scholar 

  22. Satoh, D.: A discrete Bass model and its parameter estimation. J. Oper. Res. Soc. Japan 44(1), 1–18 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Satoh, D., Matsumura, R.: Monotonic decrease of upper limit estimated using Gompertz model with data described using logistic model. Jpn. J. Ind. Appl. Math. 36(1), 79–96 (2019)

    Article  MathSciNet  Google Scholar 

  24. Satoh, D., Uchida, M.: Computer worm model describing infection via e-mail. Bull. Jpn. Soc. Ind. Appl. Math. 20(3), 50–55 (2010). (in Japanese)

    Google Scholar 

  25. Satoh, D., Yamada, S.: Discrete equations and software reliability growth models. In: Proceedings of 12th International Symposium on Software Reliability Engineering, pp. 176–184 (2001)

  26. Satoh, D.: Model selection among growth curve models that have the same number of parameters. Cogent Mathem. Stat. (to appear)

  27. Satoh, D., Yamada, S.: Parameter estimation of discrete logistic curve models for software reliability assessment. Jpn. J. Ind. Appl. Math. 19(1), 39–53 (2002)

    Article  MathSciNet  Google Scholar 

  28. The World Bank: Mobile cellular subscriptions per 100 people. http://databank.worldbank.org/data/ country/USA/556d8fa6/Popular_countries (2012)

  29. Yamada, S.: Software Reliability Modeling -Fundamentals and Applications. Springer, Berlin (2014)

  30. Yamakawa, P., Rees, G.H., Salas, J.M., Alva, N.: The diffusion of mobile telephones: an empirical analysis for Peru. Telecommun. Policy 37(6–7), 594–606 (2013)

    Article  Google Scholar 

  31. Young, P., Ord, J.: Model selection and estimation for technological growth curves. Int. J. Forecast. 5(4), 501–513 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Ryutaro Matsumura for the fruitful discussions they had.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Satoh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of Eq. (77)

Appendix: Derivation of Eq. (77)

We show derivation of Eq. (77) [23]. From the property of simple linear regression, the following equation

$$\begin{aligned} -B_n V(x_n) = Cov(x_n,y_n) \end{aligned}$$
(90)

holds because \(-B_n\) is the slope of the regression equation (Eq. (30)). Since function \(\log (\alpha +\beta \exp x)\) is strictly monotonically decreasing as x increases,

$$\begin{aligned} Cov(x_n,y_n)<0. \end{aligned}$$
(91)

We obtain

$$\begin{aligned} 0 < B_n, \end{aligned}$$
(92)

because of Eqs. (35), (90), and (91). We obtain

$$\begin{aligned} -(n+1)B_{n+1} V(x_{n+1}) = (n+1)Cov(x_{n+1},y_{n+1}) \end{aligned}$$
(93)

from Eq. (90). The left-hand side of Eq. (93) is rewritten as

$$\begin{aligned}&-(n+1)B_{n+1}V(x_{n+1})\nonumber \\&\quad =-B_{n+1}\sum _{i=1}^{n+1}(x_i-\bar{x}_{n+1})^2\nonumber \\&\quad =-B_{n+1}\left( \sum _{i=1}^{n}(x_i-\bar{x}_n+\bar{x}_n-\bar{x}_{n+1})^2+(x_{n+1}-\bar{x}_{n+1})^2\right) \nonumber \\&\quad =-B_{n+1}\left( \sum _{i=1}^{n}(x_i-\bar{x}_{n})^2+n(\bar{x}_{n+1}-\bar{x}_{n})^2+(x_{n+1}-\bar{x}_{n+1})^2\right) \nonumber \\&\quad =-B_{n+1}\left( \sum _{i=1}^{n}(x_i-\bar{x}_{n})^2+n(\bar{x}_{n+1}-\bar{x}_{n})^2+n^2(\bar{x}_{n+1}-\bar{x}_{n})^2\right) \nonumber \\&\quad =-B_{n+1}\left( \sum _{i=1}^{n}(x_i-\bar{x}_{n})^2+n(n+1)(\bar{x}_{n+1}-\bar{x}_{n})^2\right) \nonumber \\&\quad =-nB_{n+1}\left\{ V(x_n)+(n+1)(\bar{x}_{n+1}-\bar{x}_{n})^2\right\} , \end{aligned}$$
(94)

where we use Eq. (55). The right-hand side of Eq. (93) is rewritten as

$$\begin{aligned}&(n+1)Cov(x_{n+1},y_{n+1})\nonumber \\&\quad =\sum _{i=1}^{n}(x_i-\bar{x}_n+\bar{x}_n-\bar{x}_{n+1})(y_i-\bar{y}_n+\bar{y}_n-\bar{y}_{n+1})\nonumber \\&\qquad +(x_{n+1}-\bar{x}_{n+1})(y_{n+1}-\bar{y}_{n+1})\nonumber \\&\quad =\sum _{i=1}^{n}(x_i-\bar{x}_{n})(y_i-\bar{y}_{n})+n(\bar{x}_{n+1}-\bar{x}_{n})(\bar{y}_{n+1}-\bar{y}_n)\nonumber \\&\qquad +(x_{n+1}-\bar{x}_{n+1})(y_{n+1}-\bar{y}_{n+1})\nonumber \\&\quad =\sum _{i=1}^{n}(x_i-\bar{x}_{n})(y_i-\bar{y}_{n})+n(\bar{x}_{n+1}-\bar{x}_{n})(\bar{y}_{n+1}-\bar{y}_n)\nonumber \\&\qquad +n^2(\bar{x}_{n+1}-\bar{x}_{n})(\bar{y}_{n+1}-\bar{y}_n)\nonumber \\&\quad =-B_n \sum _{i=1}^{n}(x_i-\bar{x}_n)^2+n(n+1)(\bar{x}_{n+1}-\bar{x}_{n})(\bar{y}_{n+1}-\bar{y}_n)\nonumber \\&\quad =-n\left( B_n V(x_{n})-(n+1)(\bar{x}_{n+1}-\bar{x}_{n})(\bar{y}_{n+1}-\bar{y}_n)\right) , \end{aligned}$$
(95)

where we also use Eqs. (55) and (56) in Eq. (95). Thus, we obtain

$$\begin{aligned} B_{n+1}\left( V(x_n)+(n+1)(\bar{x}_{n+1}-\bar{x}_{n})^2\right) =B_n V(x_n)-(n+1)(\bar{x}_{n+1}-\bar{x}_{n})(\bar{y}_{n+1}-\bar{y}_n)\nonumber \\ \end{aligned}$$
(96)

from Eqs. (94) and (95). Eq. (96) is rewritten as

$$\begin{aligned}&(B_{n+1}-B_n)\left( V(x_n)+(n+1)(\bar{x}_{n+1}-\bar{x}_{n})^2\right) \nonumber \\&\quad =-(n+1)\left\{ B_n(\bar{x}_{n+1}-\bar{x}_{n})^2+(\bar{x}_{n+1}-\bar{x}_n)(\bar{y}_{n+1}-\bar{y}_n)\right\} \nonumber \\&\quad =-(n+1)(\bar{x}_{n+1}-\bar{x}_n)\left\{ B_n(\bar{x}_{n+1}-\bar{x}_n)+\bar{y}_{n+1}-\bar{y}_n\right\} \nonumber \\&\quad =-(\bar{x}_{n+1}-\bar{x}_n)\left\{ B_n(x_{n+1}-\bar{x}_n)+y_{n+1}-\bar{y}_n\right\} \nonumber \\&\quad =(\bar{x}_{n+1}-\bar{x}_n)\left\{ A_n-B_nx_{n+1}-y_{n+1}\right\} , \end{aligned}$$
(97)

where we use

$$\begin{aligned} \bar{y}_n=A_n-B_n\bar{x}_n, \end{aligned}$$
(98)

and Eqs. (55) and (56).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satoh, D. Property of logistic data exposed with Gompertz model and resistance to noise in actual data. Japan J. Indust. Appl. Math. 36, 937–957 (2019). https://doi.org/10.1007/s13160-019-00382-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-019-00382-2

Keywords

Mathematics Subject Classification

Navigation