Skip to main content
Log in

Le complexe d’espèces Anopheles gambiae et le gène de résistance Kdr en périphérie de Douala, Cameroun

The Anopheles gambiae species complex and Kdr resistance gene at the periphery of Douala, Cameroon

  • Entomologie Médicale / Medical Entomology
  • Published:
Bulletin de la Société de pathologie exotique

Résumé

L’étude a été menée en mai et juin 2015 dans deux quartiers péri-urbains de la ville de Douala, Yassa (industrialisé) et Logbessou (non industrialisé), afin d’étudier la distribution spatiale des membres du complexe Anopheles gambiae, de déterminer leur statut de résistance et de rechercher la présence et la distribution de la mutation Kdr. Les moustiques ont été collectés au stade larvaire par la méthode du « dipping », puis élevés jusqu’au stade adulte. La sensibilité des populations adultes d’An. gambiae s.l. aux DDT et pyréthrinoïdes a été évaluée selon le protocole recommandé par l’OMS. Les moustiques issus des tests ont été identifiés par la PCR SINE. Seuls les survivants aux tests ont été utilisés pour la recherche de la mutation Kdr par PCR. Dans les localités étudiées, le complexe gambiae était composé d’An. coluzzii et An. gambiae vivant en sympatrie dans leurs gites de ponte avec une prédominance d’An. gambiae à Logbessou (88 %) et d’An. coluzzii à Yassa (68 %). Les tests à la deltaméthrine, perméthrine et DDT ont révélé des taux de mortalité inférieurs à 90 % quelle que soit la localité de provenance des anophèles. La PCR de diagnostic de la mutation Kdr a montré que plus de 95 % des survivants en étaient porteurs dans les deux sites, avec les fréquences de l’allèle résistant variant de 0,96 à 1,0 chez An. gambiae et 0,89 à 0,96 chez An. coluzzii. La forte résistance d’An. coluzzii et d’An. gambiae aux insecticides requiert une mise au point de nouvelles molécules insecticides.

Abstract

This study was conducted from May to June 2015 in Yassa (industrialized area) and Logbessou (non-industrialized area), two peri-urban areas of the city of Douala, Cameroon with the aim of an assessment of the spatial distribution of the gambiae complex, the determination of their resistance to insecticides and the distribution of the Kdr mutation. Mosquito larvae were collected by the dipping method and nursed to adult stage. The sensitivity of adult Anopheles gambiae s.l. populations to DDT and pyrethroids was assessed following WHO protocol. All tested mosquitoes were identified by PCR SINE. Only survivors were used to search for the Kdr mutation. In both areas, the gambiae complex included An. coluzzii and An. gambiae sympatric in their breeding sites. However, An. gambiae was predominant in Logbessou (88%) and An. coluzzii in Yassa (68%). Tests with deltamethrin, permethrin and DDT revealed mortality rates below 90% regardless of the area of origin of the mosquitoes. PCR diagnosis of Kdr mutation showed that over 95% of survivors harbored the Kdr gene in both sites, with resistant allele frequencies ranging from 0.96 to 1.0 in An. gambiae and from 0.89 to 0.96 in An. coluzzii. The strong resistance of An. coluzzii and This study was conducted from May to June 2015 in Yassa (industrialized area) and Logbessou (nonindustrialized area), two peri-urban areas of the city of Douala, Cameroon with the aim of an assessment of the spatial distribution of the gambiae complex, the determination of their resistance to insecticides and the distribution of the Kdr mutation. Mosquito larvae were collected by the dipping method and nursed to adult stage. The sensitivity of adult Anopheles gambiae s.l. populations to DDT and pyrethroids was assessed following WHO protocol. All tested mosquitoes were identified by PCR SINE. Only survivors were used to search for the Kdr mutation. In both areas, the gambiae complex included An. coluzzii and An. gambiae sympatric in their breeding sites. However, An. gambiae was predominant in Logbessou (88%) and An. coluzzii in Yassa (68%). Tests with deltamethrin, permethrin and DDT revealed mortality rates below 90% regardless of the area of origin of the mosquitoes. PCR diagnosis of Kdr mutation showed that over 95% of survivors harbored the Kdr gene in both sites, with resistant allele frequencies ranging from 0.96 to 1.0 in An. gambiae and from 0.89 to 0.96 in An. coluzzii. The strong resistance of An. coluzzii and This study was conducted from May to June 2015 in Yassa (industrialized area) and Logbessou (nonindustrialized area), two peri-urban areas of the city of Douala, Cameroon with the aim of an assessment of the spatial distribution of the gambiae complex, the determination of their resistance to insecticides and the distribution of the Kdr mutation. Mosquito larvae were collected by the dipping method and nursed to adult stage. The sensitivity of adult Anopheles gambiae s.l. populations to DDT and pyrethroids was assessed following WHO protocol. All tested mosquitoes were identified by PCR SINE. Only survivors were used to search for the Kdr mutation. In both areas, the gambiae complex included An. coluzzii and An. gambiae sympatric in their breeding sites. However, An. gambiae was predominant in Logbessou (88%) and An. coluzzii in Yassa (68%). Tests with deltamethrin, permethrin and DDT revealed mortality rates below 90% regardless of the area of origin of the mosquitoes. PCR diagnosis of Kdr mutation showed that over 95% of survivors harbored the Kdr gene in both sites, with resistant allele frequencies ranging from 0.96 to 1.0 in An. gambiae and from 0.89 to 0.96 in An. coluzzii. The strong resistance of An. coluzzii and An. gambiae to insecticides highlights the need for developing new mosquito insecticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Abott WS (1925) A method of computing the effectiveness of an insecticide. J Econom Entomol 18:265–267

    Article  Google Scholar 

  2. Akogbéto M, Yakoubou S (1999) Résistance des vecteurs du paludisme vis-à-vis des pyréthrinoïdes utilisés pour l’imprégnation des moustiquaires au Bénin, Afrique de l’Ouest. Bull Soc Pathol Exot 92(2): 123–30 [http://www.pathexo.fr/documents/articles-bull/T92-2-1913.pdf]

    PubMed  Google Scholar 

  3. Akono Ntonga P, Tonga C, Mbida Mbida JA, et al (2015) Anopheles gambiae, vecteur majeur du paludisme à Logbessou, zone péri-urbaine de Douala (Cameroun). Bull Soc Pathol Exot 108(5): 360–8

    Article  CAS  PubMed  Google Scholar 

  4. Antonio-Nkondjio C, Defo-Talom B, Tagne-Fotso R, et al (2012) High mosquito burden and malaria transmission in a district of the city of Douala, Cameroon. BMC Infect Dis 12:275

    Article  PubMed  PubMed Central  Google Scholar 

  5. Antonio-Nkondjio C, Demanou M, Etang J, Bouchite B (2013) Impact of cyfluthrin (Solfac EW050) impregnated bed nets on malaria transmission in the city of Mbandjock: lessons for the nationwide distribution of long-lasting insecticidal nets (LLINs) in Cameroon. Parasit Vectors 6(1):10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Antonio-Nkondjio C, Fossog BT, Ndo C, et al (2011) Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaoundé (Cameroon): influence of urban agriculture and pollution. Malar J 10:154

    Article  PubMed  PubMed Central  Google Scholar 

  7. Berzosa PJ, Cano J, Roche J, et al (2002) Malaria vectors in Bioko Island (Equatorial Guinea): PCR determination of the members of Anopheles gambiae Giles complex (Diptera: Culicidae) and pyrethroid knockdown resistance (Kdr) in An. gambiae sensu stricto. J Vect Ecol 27:102–6

    CAS  Google Scholar 

  8. Chandre F, Darrier F, Manga L, et al (1999) Status of pyrethroid resistance in Anopheles gambiae sensu lato. Bull World Health Organ 77(3): 230–4

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chouaïbou M, Etang J, Brévault T, et al (2008) Dynamics of insecticide resistance in the malaria vector Anopheles gambiae s.l. from an area of extensive cotton cultivation in Northern Cameroon. Trop Med Int Health 13(4): 476–86

    Article  PubMed  Google Scholar 

  10. Coetzee M, Hunt RH, Wilkerson R, et al (2013) Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa 3619:246–74

    Article  PubMed  Google Scholar 

  11. Coetzee M, van Wyk P, Booman M, et al (2006) Insecticides resistance in malaria vector mosquitoes in a gold mining town in Ghana and implications for malaria control. Bull Soc Pathol Exot 99(5): 400–3 [http://www.pathexo.fr/documents/articlesbull/ T99-5-2857-b-4p.pdf]

    CAS  PubMed  Google Scholar 

  12. Desfontaine MA, Tchikangwa I, Le Goff G, et al (1991) Influence de l’alimentation des larves d’Anopheles gambiae (Diptera, Culicidae) sur le développement préimaginal en insectarium. Bulletin de Liaison et de Documentation-OCEAC. 98:12–14

    Google Scholar 

  13. Diop A, Molez JF, Konaté L, et al (2002) Rôle d’Anopheles melas Theobald (1903) dans la transmission du paludisme dans la mangrove du Saloum (Sénégal). Parasite 9(3): 239–46

    Article  CAS  PubMed  Google Scholar 

  14. Etang J, Fondjo E, Chandre F, et al (2006) First report of knockdown mutations in the malaria vector Anopheles gambiae from Cameroon. Am J Trop Med Hyg 74(5): 795–7

    CAS  PubMed  Google Scholar 

  15. Etang J, Mbida Mbida A, Akono Ntonga P, et al (2016) Anopheles coluzzii larval habitat and insecticide resistance in the island area of Manoka, Cameroon. BMC Infect Dis 16:217

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fogwé NZ, Tchotsoua M (2007) Evaluation géographique de deux décennies de lutte contre les inondations dans la ville de Douala (Cameroun). Rapport, Université de Douala. Actes des JSIRAU, 6 p

    Google Scholar 

  17. Gillies MT, Coetzee M (1987) A Supplement to the Anophelinae of Africa South of the Sahara. (Afrotropical Region) Publications of the South African Institute for Medical Research No. 55. 146 p

    Google Scholar 

  18. Gillies MT, De Meillon B (1968) The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region). Publications of the South African Institute for Medical Research No. 54. 343 p

    Google Scholar 

  19. Kamdem C, Tene Fossog B, Simard F, et al (2012) Anthropogenic Habitat Disturbance and Ecological Divergence between Incipient Species of the Malaria Mosquito Anopheles gambiae. PLOS ONE 7(6):e39453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Keïta M, Traoré S, Sogoba N, et al (2016) Susceptibilité d’Anopheles gambiae sensu lato aux insecticides communément utilisés dans la lutte antivectorielle au Mali. Bull Soc Pathol Exot 109(1): 39–45

    Article  PubMed  Google Scholar 

  21. Martinez-Torres D, Chandre F, Williamson MS, et al (1998) Molecular characterization of pyrethroid knockdown resistance (Kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol 7(2): 179–84

    Article  CAS  PubMed  Google Scholar 

  22. Mbida Mbida A, Etang J, Akono Ntonga P, et al (2016) Preliminary investigation on aggressive culicidae fauna and malaria transmission in two wetlands of the Wouri river estuary, Littoral-Cameroon. Journal of Entomology and Zoology Studies 105(46): 105–110

    Google Scholar 

  23. MINSANTE (2013) Enquête post campagne sur l’utilisation des moustiquaires imprégnées a longue durée d’action. 109 p

    Google Scholar 

  24. Nwane P, Etang J, Chouaïbou M, et al (2011) Kdr-based insecticide resistance in Anopheles gambiae s.s populations in Cameroon: spread of the L1014F and L1014S mutations. BMC Res Notes 4:463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nwane P, Etang J, Costantini C, et al (2009) Field evaluation of three commercial repellent formulations against afro tropical Vectors mosquitoes in Cameroon. Sciences et Médécine d’Afrique 1:21–2

    Google Scholar 

  26. OMS (2013) Test procedures for insecticide resistance monitoring in malaria vectors. Geneva, Switzerland, 30 p

  27. OMS (2015) Stratégie technique mondiale de lutte contre le paludisme 2016–2030, Genève, Suisse, 33 p

  28. Pinto J, Lynd A, Elissa N, et al (2006) Co-occurrence of East and West African kdr mutations suggests high levels of resistance to pyrethroid insecticides in Anopheles gambiae from Libreville, Gabon. Med Vet Entomol 20(1): 27–32

    Article  CAS  PubMed  Google Scholar 

  29. Ranson H, Jensen B, Wang X, et al (2000) Genetic mapping of two loci affecting DDT resistance in the malaria vector Anopheles gambiae. Insect Mol Biol 5):499–507

    Article  Google Scholar 

  30. Reimer LG, Tripet F, Slotman M, et al (2005) An unusual distribution of the kdr gene among populations of Anopheles gambiae on the island of Bioko, Equatorial Guinea. Insect Mol Biol 14(6): 683–8

    Article  CAS  PubMed  Google Scholar 

  31. Santolamazza F, Mancini E, Simard F, et al (2008) Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar J 7:163

    Article  PubMed  PubMed Central  Google Scholar 

  32. Service MW (1993) Mosquito ecology: Field Sampling Methods, Vector biology and control, Elsevier Applied Science; 2nd edition. 988 p

    Book  Google Scholar 

  33. Slotman MA, Reimer LJ, Thiemann T, et al (2006) Reduced recombination rate and genetic differentiation between the M and S forms of Anopheles gambiae s.s. Genetics 174(4): 2081–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tene Fossog B, Ayala D, Acevedo P, et al (2015) Habitat segregation and ecological character displacement in cryptic African malaria mosquitoes. Evolutionary applications 8(4):326-45

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tene Fossog B, Poupardin R, Costantini C, et al (2013) Resistance to DDT in an urban setting: common mechanisms implicated in both M and S forms of Anopheles gambiae in the city of Yaoundé Cameroon. PLoS ONE 8(4):e61408

    Article  Google Scholar 

  36. Voelckel J, Mouchet J (1959) Quelques aspects de la désinsectisation systématique en milieu urbain tropical. Méd Trop 3:19

    Google Scholar 

  37. Wondji C, Frédéric S, Petrarca V, et al (2005) Species and populations of the Anopheles gambiae complex in Cameroon with special emphasis on chromosomal and molecular forms of Anopheles gambiae s.s. J Med Entomol 42(6): 998–1005

    Article  PubMed  Google Scholar 

  38. Yadouleton AW, Padonou G, Asidi A, et al (2010) Insecticide resistance status in Anopheles gambiae in southern Benin. Malar J 9:83

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ntonga Akono.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntonga Akono, P., Mbouangoro, A., Mbida Mbida, A. et al. Le complexe d’espèces Anopheles gambiae et le gène de résistance Kdr en périphérie de Douala, Cameroun. Bull. Soc. Pathol. Exot. 110, 122–129 (2017). https://doi.org/10.1007/s13149-017-0553-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13149-017-0553-2

Mots clés

Keywords

Navigation