Skip to main content
Log in

Applying a coupled hydrometeorological simulation system to flash flood forecasting over the Korean Peninsula

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In flash flood forecasting, it is necessary to consider not only traditional meteorological variables such as precipitation, evapotranspiration, and soil moisture, but also hydrological components such as streamflow. To address this challenge, the application of high resolution coupled atmospheric-hydrological models is emerging as a promising alternative. This study demonstrates the feasibility of linking a coupled atmospheric-hydrological model (WRF/WRFHydro) with 150-m horizontal grid spacing for flash flood forecasting in Korea. The study area is the Namgang Dam basin in Southern Korea, a mountainous area located downstream of Jiri Mountain (1915 m in height). Under flash flood conditions, the simulated precipitation over the entire basin is comparable to the domain-averaged precipitation, but discharge data from WRF-Hydro shows some differences in the total available water and the temporal distribution of streamflow (given by the timing of the streamflow peak following precipitation), compared to observations. On the basis of sensitivity tests, the parameters controlling the infiltration of excess precipitation and channel roughness depending on stream order are refined and their influence on temporal distribution of streamflow is addressed with intent to apply WRF-Hydro to flash flood forecasting in the Namgang Dam basin. The simulation results from the WRF-Hydro model with optimized parameters demonstrate the potential utility of a coupled atmospheric-hydrological model for forecasting heavy rain-induced flash flooding over the Korean Peninsula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnault, J., S. Wagner, T. Rummler, B. Fersch, J. Bliefernicht, S. Andresen, and H. Kunstmann, 2016: Role of runoff-infiltration partitioning and resolved overland flow on land-atmosphere feedbacks: A case study with the WRF-Hydro coupled modeling system for west Africa. J. Hydrometeor., 17, 1489–1516, doi:10.1175/JHM-D-15-0089.1.

    Article  Google Scholar 

  • Bacchi, B., and R. Ranzi, 2000: The RAPHAEL Project. Final report. EC, directorate general XII, Programme Environment and Climate 1994-1998. Contract No. ENV4-CT97-0552, 344 pp.

    Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system, Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.

    Article  Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.

    Article  Google Scholar 

  • Flesch, T. K., and G. W. Reuter, 2012: WRF model simulation of two alberta flooding events and the impact of topography. J. Hydrometeor., 13, 695–708, doi:10.1175/JHM-D-11-035.1.

    Article  Google Scholar 

  • Georgakakos, K. P., 2006: Analytical results for operational flash flood guidance. J. Hydrol., 317, 81–103.

    Article  Google Scholar 

  • Gochis, D. J., W. Yu, and D. N. Yates, 2015: The WRF-Hydro model technical description and user’s guide, version 3.0. NCAR Technical Document. 120 pp. [Available online at: http://www.ral.ucar.edu/projects/wrf_hydro/].

    Google Scholar 

  • Ham, S., S.-Y. Hong, Y. Noh, S.-I. An, Y.-H. Byun, H.-S. Kang, J. Lee, and W.-T. Kwon, 2012: Effects of freshwater runoff on a tropical pacific climate in the HadGEM2. Asia-Pac. J. Atmos. Sci., 48, 457–463, doi:10.1007/s13143-012-0041-3.

    Article  Google Scholar 

  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

    Google Scholar 

  • Hong, S.-Y., and J.-W. Lee, 2009: Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmos. Res., 93, 818–831.

    Article  Google Scholar 

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.

    Article  Google Scholar 

  • HRFCO, 2007: Development of flash flood warning system based on rain radar observation. Han River Flood Control Office, Seoul, 438 pp (in Korean).

  • Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181.

    Article  Google Scholar 

  • Kim, J., H. T. Choi, and H.-G. Lim, 2015: Evaluation on the application of the estimation of time of concentration using real rainfall-runoff events in small forest watershed. J. Korean Soc. Hazard Mitigation, 15, 199–206, doi:10.9798/KOSHAM.2015.15.6.199 (in Korean with English abstract).

    Article  Google Scholar 

  • Kim, Y.-S., O.-R. Park, and S.-O. Hwang, 2002: Realtime operation of the Korea Local Analysis and prediction system at METRI. J. Korean Meteor. Soc., 38, 1–10 (in Korean with English abstract).

    Google Scholar 

  • Lee, D.-K., D.-Y. Eom, J.-W. Kim, and J.-B. Lee, 2010: High-resolution summer rainfall prediction in the JHWC real-time WRF system. Asia-Pac. J. Atmos. Sci., 46, 341–353, doi:10.1007/s13143-010-1003-2.

    Article  Google Scholar 

  • Lee, J.-S., 2012: Determination of resistance coefficients using field measurements in natural rivers. J. Korean Soc. Civil Eng., 32, 139–147 (in Korean with English abstract).

    Article  Google Scholar 

  • Lee, J.-W., S.-Y. Hong, E.-C. Chang, M.-S. Suh, and H.-S. Kang, 2014: Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GIMs-RMP. Clim. Dyn., 42, 733–747, doi: 10.1007/s00382-013-1841-6.

    Article  Google Scholar 

  • Lee, T.-Y., and Y.-H. Kim, 2007: Heavy precipitation systems over the Korean peninsula and their classification. J. Korean Meteor. Soc., 43, 367–396.

    Google Scholar 

  • Ma, L.-M., and Z.-M. Tan, 2009: Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmos. Res., 92, 190–211.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682.

    Article  Google Scholar 

  • Nakada, S., K. Baba, M. Sato, M. Natsuike, Y. Ishikawa, T. Awaji, K. Koyamada, and S.-I. Saitoh, 2014: The role of snowmelt runoff on the ocean environment and scallop production in Funka Bay, Japan. Prog. Earth Planet. Sci., 1, doi:10.1186/s40645-014-0025-2.

  • NGII, 2010: The Geography of Korea. National Geographic Information Institute, Suwon, 432 pp.

  • Park, T., C. J. Jang, J. H. Jungclaus, H. Haak, W. Part, and I. S. Oh, 2011: Effects of the Changjiang river discharge on sea surface warming in the Yellow and East China Seas in summer. Cont. Shelf Res., 31, 15–22, doi:10.1016/j.csr.2010.10.012.

    Article  Google Scholar 

  • Schaake, J. C., V. I. Koren, Q.-Y. Duan, K. Mitchell, and F. Chen, 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 7461–7475.

    Article  Google Scholar 

  • Shih, D.-S., C.-H. Chen, and G.-T. Yeh, 2014: Improving our understanding of flood forecasting using earlier hydro-meteorological intelligence. J. Hydrol., 512, 470–481, doi:10.1016/j.jhydrol.2014.02.059.

    Article  Google Scholar 

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF Version 2. NCAR Tech. Note NCAR/TN-4681STR, 88 pp.

    Google Scholar 

  • Water Resources Management Information System, cited 2016}: Water Resources Management Information System. [Available online at www. wamis.go.kr.

  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0-36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407–437.

    Article  Google Scholar 

  • Yoshitani, J., Z. Q. Chen, M. L. Kavvas, and K. Fukami, 2009: Atmospheric model-based streamflow forecasting at small, mountainous watersheds by a distributed hydrologic model: Application to a watershed in Japan. J. Hydrol. Eng., 14, 1107–1118.

    Article  Google Scholar 

  • Younis, J., M.-H. Ramos, and J. Thielen, 2008: EFAS forecasts for the March-April 2006 flood in the Czech part of the Elbe River Basin-A case study. Atmos. Sci. Lett., 9, 88–94.

    Article  Google Scholar 

  • Yucel, I., and A. Onen, 2014: Evaluating a mesoscale atmosphere model and a satellite based algorithm in estimating extreme rainfall events in northwestern Turkey. Nat. Hazards Earth Syst. Sci., 14, 611–624, doi:10.5194/nhess-14-611-2014.

    Article  Google Scholar 

  • Yucel, I., A. Onen, K. K. Yilmaz, and D. J. Gochis, 2015: Calibration and evaluation of a flood forecasting system: Utility of numerical weather predication model, data assimilation and satellite-based rainfall. J. Hydrol., 523, 49–66, doi:10.1016/j.jhydrol.2015.01.042.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-Jin Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, Y., Lim, YJ., Ji, HS. et al. Applying a coupled hydrometeorological simulation system to flash flood forecasting over the Korean Peninsula. Asia-Pacific J Atmos Sci 53, 421–430 (2017). https://doi.org/10.1007/s13143-017-0045-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-017-0045-0

Keywords

Navigation