Skip to main content
Log in

Role of convective parameterization in simulations of heavy precipitation systems at grey-zone resolutions — case studies

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

We have investigated the role of convective parameterization in simulations of heavy precipitation systems at grey-zone (2–10 km) resolutions using an approach similar to that used in “observing system simulation experiment”. Simulations with a 1-km grid serve as benchmark simulations. The impacts of convective parameterization at greyzone resolutions (i.e., 3, 6, and 9 km) are then investigated. This study considers two heavy precipitation systems including one associated with a mesoscale cyclone generated over the Shandong Peninsula on 24–25 July 1991, and the other associated with a cloud cluster occurred on 15–16 July 2009. The present study indicates that convective parameterization does not affect much the simulations of the two heavy precipitation systems with 3-km grid size. However, it significantly affects simulations for grid sizes of 6 and 9 km. Simulations with the Kain-Fritsch scheme produce deficiencies such as relatively small heavy rainfall area, smaller maximum precipitation rate, wider area of weak precipitation, etc. Simulations without convective parameterization have also some negative effects such as the overprediction of area-averaged precipitation rate and others. A modified trigger function in the Kain-Fritsch scheme is found to improve the simulations of the heavy precipitation systems over the Korean Peninsula by reducing excessive trigger of convection, especially for simulations with 6- and 9- km grids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 2493–2525.

    Article  Google Scholar 

  • _____, and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. J. Atmos. Sci., 30, 674–701.

    Google Scholar 

  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677–691.

    Google Scholar 

  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 2394–2416.

    Article  Google Scholar 

  • Craig, G. C., and A. Dörnbrack, 2008: Entrainment in cumulus clouds: What resolution is cloud-resolving? J. Atmos. Sci., 65, 3978–3988.

    Article  Google Scholar 

  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State-NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 1493–1513.

    Article  Google Scholar 

  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale model. J. Atmos. Sci., 48, 2313–2335.

    Article  Google Scholar 

  • Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 1722–1733.

    Article  Google Scholar 

  • Gerard, L., 2007: An integrated package for subgrid convection, clouds and precipitation compatible with meso-gamma scales. Quart. J. Roy. Meteor. Soc., 133, 711–730.

    Article  Google Scholar 

  • _____, J. M. Piriou, R. Brožková, J. F. Geleyn, and D. Banciu, 2009: Cloud and precipitation parameterization in a meso-gamma-scale operational weather prediction model. Mon. Wea. Rev., 137, 3960–3977.

    Article  Google Scholar 

  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterization. Mon. Wea. Rev., 121, 764–787.

    Article  Google Scholar 

  • _____, J. Dudhia, and D. Stauffer, 1994: A description of the Fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 117 pp.

  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155–167.

    Article  Google Scholar 

  • Hong, S.-Y., 2004: Comparison of heavy rainfall mechanism in Korea and the Central U. S. J. Meteor. Soc. Japan, 82(5), 1469–1479.

    Article  Google Scholar 

  • Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol., 43, 170–181.

    Article  Google Scholar 

  • _____, and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784–2802.

    Article  Google Scholar 

  • _____, and ______, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • _____, and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931–952.

    Article  Google Scholar 

  • Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 1232–1240.

    Article  Google Scholar 

  • Lee, M.-J., and D.-K. Lee, 2006: Effects of trigger function in the Kain-Fritsch cumulus parameterization scheme on heavy rainfall simulation. J. Korean Meteor. Soc., 42, 397–410.

    Google Scholar 

  • Lee, T.-Y., and Y.-H. Kim, 2007: Heavy precipitation systems over the Korean Peninsula and their classification. J. Korean Meteor. Soc., 43, 367–396.+

    Google Scholar 

  • _____, C.-S. Shin, S.-H. Park, Y.-Y. Park and Y.-H. Kim, 2004: A cyclogenesis and heavy rainfalls over the Changma front. Intl. Conf. on Mesoscale Convective Systems IV, Beijing, China.

  • Liu, C.-H., M. W. Moncrieff, and W. W. Grabowski, 2001: Hierarchical modeling of tropical convective systems using explicit and parameterized approaches. Quart. J. Roy. Meteor. Soc., 127, 493–515.

    Article  Google Scholar 

  • Ma, L.-M., and Z.-M. Tan, 2009: Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmos. Res., 92, 190–211.

    Article  Google Scholar 

  • Molinari, J. M., and M. Dudek, 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120, 326–344.

    Article  Google Scholar 

  • Narita, M., and S. Ohmori, 2007: Improving precipitation forecasts by the operational nonhydrostatic mesoscale model with the Kain-Fritsch convective parameterization and cloud microphysics. Preprints, 12th Conf on Mesoscale Process, Watervillle Valley, NH, CD-ROM, 3.7.

  • National Centers for Environmental Prediction (NCEP), 2006: NCEP FNL operational model global tropospheric analyses, continuing from July 1999. [Available online at http://dss.ucar.edu/datasets/ds083.2/.]

  • Petch, J. C., A. R. Brown, and M. E. B. Gray, 2002: The impact of horizontal resolution on the simulations of convective development over land. Quart. J. Roy. Meteor. Soc., 128, 2031–2044.

    Article  Google Scholar 

  • Reisner, J., R. J. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124B, 1071–1107.

    Article  Google Scholar 

  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 1266–1298.

    Article  Google Scholar 

  • Schwartz, C. S., and Coauthors, 2009: Next-day convection-allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 3351–3372.

    Article  Google Scholar 

  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542.

    Article  Google Scholar 

  • Warner, T. T., and H.-M. Hsu, 2000: Nested-model simulation of moist convection: The impact of coarse-grid parameterized convection on fine-grid resolved convection. Mon. Wea. Rev., 128, 2211–2231.

    Article  Google Scholar 

  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527–548.

    Article  Google Scholar 

  • Yang, M.-J., and Q.-C. Tung, 2003: Evaluation of rainfall forecasts over Taiwan by four cumulus parameterization schemes. J. Meteor. Soc. Japan, 81, 1163–1183.

    Article  Google Scholar 

  • Yu, X., and T.-Y. Lee, 2010: Role of convective parameterization in simulations of a convection band at grey-zone resolutions. Tellus A, 62, 617–632.

    Google Scholar 

  • Zhang, D.-L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteorol., 21, 1594–1609.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Lee, TY. Role of convective parameterization in simulations of heavy precipitation systems at grey-zone resolutions — case studies. Asia-Pacific J Atmos Sci 47, 99–112 (2011). https://doi.org/10.1007/s13143-011-0001-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-011-0001-3

Key words

Navigation