Skip to main content

Advertisement

Log in

Recent Progress in the Development of TSPO PET Ligands for Neuroinflammation Imaging in Neurological Diseases

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Neuroinflammation is heavily associated with various neurological diseases including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and stroke. It is strongly characterized by the activation of microglia which can be visualized using position emission tomography (PET). Traditionally, translocator protein 18 kDa (TSPO) has been the preferred target for imaging the inflammatory progression of the microglial component. TSPO is expressed in the outer mitochondrial membrane and present in very low concentrations in the healthy human brain, but is markedly upregulated in response to brain injury and inflammation. Due to its value as a marker of microglial activation and subsequent utility for evaluating neuroinflammation in CNS disorders, several classes of TSPO radioligands have been developed and evaluated. However, the application of these second-generation TSPO radiotracers has been subject to several limiting factors, including a polymorphism that affects TSPO binding. This review focuses on recent developments in TSPO imaging, as well as current limitations and suggestions for future directions from a medical imaging perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Turkheimer FE, Rizzo G, Bloomfield PS, Howes O, Zanotti-Fregonara P, Bertoldo A, et al. The methodology of TSPO imaging with positron emission tomo-graphy. Biochem Soc Trans. 2015;43:586–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dolle F, Luus C, Reynolds A, Kassiou M. Radiolabelled molecules for imaging the translocator protein (18KDa) using prsitron emission tomography. Curr Med Chem. 2009;16:2899–923.

    Article  CAS  PubMed  Google Scholar 

  3. Chauveau F, Boutin H, Van Camp N, Dollé F, Tavitian B. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging. 2008;35:2304–19.

    Article  PubMed  Google Scholar 

  4. Ruying F, Qingyu S, Xu P, Luo JJ, Yamei T. Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol. 2014;49:1422–34.

    Article  Google Scholar 

  5. Rupprecht R, Papadopoulos V, Rammes G, et al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov. 2010;9:971–88.

    Article  CAS  PubMed  Google Scholar 

  6. Chen MK, Guilarte TR. Translocator protein 18kDA (TSPO): molecular sensor of brain injury & repair. Pharmacol Ther. 2008;118:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Exp Neurol. 2013;244:11–21.

    Article  CAS  PubMed  Google Scholar 

  8. Scarf AM, Kassiou M. The translocator protein. J Nucl Med. 2011;52:677–80.

    Article  CAS  PubMed  Google Scholar 

  9. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27:402–09.

    Article  CAS  PubMed  Google Scholar 

  10. Casellas P, Galiegue S, Basile AS. Peripheral benzodiazepine receptors and mitochondrial function. Neurochem Int. 2002;40:475–86.

    Article  CAS  PubMed  Google Scholar 

  11. Cherry SR, Gambhir SS. Use of positron emission tomography in animal research. ILAR J. 2001;42:219–32.

    Article  CAS  PubMed  Google Scholar 

  12. Gavish M, Bachman I, Shoukrun R, Katz Y, Veenman L, Weisinger G, et al. Enigma of the peripheral benzodiazepine receptor. Pharmacol Rev. 1999;51:629–50.

    CAS  PubMed  Google Scholar 

  13. Schweitzer PJ, Fallon BA, Mann JJ, Kumar JS. PET tracers for the peripheral bendiazepine receptor and uses thereof. Drug Discov Today. 2010;15:933–42.

    Article  CAS  PubMed  Google Scholar 

  14. Trapani A, Palazzo C, de Candia M, Lasorsa FM, Trapani G. Targeting of the translocator protein 18 kDa (TSPO): a valuable approach for nuclear and optical imaging of activated microglia. Bioconjug Chem. 2013;24:1415–28.

    Article  CAS  PubMed  Google Scholar 

  15. Luus C, Hanani R, Reynolds A, Kassiou M. The development of PET radioligands for imaging the translocator protein (18 kDa): What have we learned. J Label Compd Radiopharm. 2010;53:501–10.

    CAS  Google Scholar 

  16. Junck L, Olson JM, Ciliax BJ, Koeppe RA, Watkins GL, Jewett DM, et al. PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding site. Ann Neurol. 1989;26:752–58.

    Article  CAS  PubMed  Google Scholar 

  17. Farges R, Joseph-Liauzun E, Shire D, Caput D, Le Fur G, Ferrara P. Site-directed mutagenesis of the peripheral benzodiazepine receptor: identification of amino acids implicated in the binding site of Ro5-4864. Mol Pharmacol. 1994;46:1160–67.

    CAS  PubMed  Google Scholar 

  18. Wang JK, Taniguchi T, Spector S. Properties of [3H]diazepam binding sites on rat blood platelets. Life Sci. 1980;27:1881–88.

    Article  CAS  PubMed  Google Scholar 

  19. Camsonne R, Crouzel C, Comar D, Maziere M, Prenant C, Sastre J, et al. Synthesis of N-(C-11) methyl, N-(methyl-1 propyl), (chloro-2 phenyl)-1 isoquinoleine carboxamide-3 (Pk-11195): a new ligand for peripheral benzodiazepine receptors. J Label Compd Radiopharm. 1984;21:985–91.

    Article  CAS  Google Scholar 

  20. Cagnin A, Gerhard A, Banati RB. In vivo imaging of neuroinflammation. Eur Neuropsychol Pharmacol. 2002;12:581–86.

  21. Shah F, Hume SP, Pike VW, Ashworth S, McDermott J. Synthesis of the enantiomers of [N methyl-11C]PK11195 and comparison of their behaviours as radioligands for PK binding sites in rats. Nucl Med Biol. 1994;21:573–81.

    Article  CAS  PubMed  Google Scholar 

  22. Rao VL, Butterworth RF. Characterization of binding sites for the Ѡ3 receptor ligands [3H]PK11195 and [3]H Ro5-4864 in human brain. Eur J Pharmacol. 1997;340:89–99.

    Article  CAS  PubMed  Google Scholar 

  23. Janssen B, Vugts DJ, Funke U, Molenaar GT, Kruijer PS, van Berckel BN, et al. Imaging of neuroinflammation in Alzheimer’s disease, multiple sclerosis and stroke: recent developments in positron emission tomography. Biochim Biophys Acta. 1862;2016:425–41.

    Google Scholar 

  24. Versijpt JJ, Dumont F, Van Laere KJ, Decoo D, Santens P, Audenaert K, et al. Assessment of neuroinflammation and microglial activation in Alzheimer’s disease with radiolabelled PK11195 and single photon emission computed tomography. A pilot study. Eur Neurol. 2003;50:39–47.

    Article  CAS  PubMed  Google Scholar 

  25. Probst KC, Izquierdo D, Bird JL, Brichard L, Franck D, Davies JR, et al. Strategy for improved [11C]DAA1106 radiosynthesis and in vivo peripheral benzodiazepine receptor imaging using microPET, evaluation of [11C]DAA1106. Nucl Med Biol. 2007;34:439–46.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang MR, Kida T, Noguchi J, Furutsuka K, Maeda J, Suhara T, et al. [11C]DAA1106: radio synthesis and in vivo binding to peripheral benzodiazepine receptors in mouse brain. Nucl Med Biol. 2003;30:513–19.

    Article  CAS  PubMed  Google Scholar 

  27. Chaki S, Funakoshi T, Yoshikawa R, Okuyama S, Okubo T, Nakazato A, et al. Binding characteristics of [3H]DAA1106, a novel and selective ligand for peripheral benzodiazepine receptors. Eur J Pharmacol. 1999;371:197–204.

    Article  CAS  PubMed  Google Scholar 

  28. Maeda J, Suhara T, Zhang MR, Okauchi T, Yasuno F, Ikoma Y, et al. Novel peripheral benzodiazepine receptor ligand [11C]DAA1106 for PET: an imaging tool for glial cells in the brain. Synape. 2004;52:283–89.

    Article  CAS  Google Scholar 

  29. Yasuno F, Ota M, Kosaka J, Ito H, Higuchi M, Doronbekov TK, et al. Increased binding of peripheral benzodiazepine receptor in Alzheimer’s disease measured by positron emission tomography with [11C]DAA1106. Biol Psychiatry. 2008;64:835–41.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang MR, Maeda J, Furutsuka K, Yoshida Y, Ogawa M, Suhara T, et al. [18F]FMDAA1106 and [18F]FEDAA1106: two positron-emitter labeled ligands for peripheral benzodiazepine receptor (PBR). Bioorg Med Chem Lett. 2003;13:201–4.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang MR, Maeda J, Ogawa M, Noguchi J, Ito T, Yoshida Y, et al. Development of a new radioligand, N-(5-fluoro-2-phenoxyphenyl)-N-(2-[18F]fluoroethyl-5-methoxybenzyl)acetamide, for pet imaging of peripheral benzodiazepine receptor in primate brain. J Med Chem. 2004;47:2228–35.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang MR, Maeda J, Ito T, Okauchi T, Ogawa M, Noguchi J, et al. Synthesis and evaluation of N-(5-fluoro-2-phenoxyphenyl)-N-(2-[18F]fluoromethoxy-d(2)-5-methoxybenzyl)acetamide: a deuterium-substituted radioligand for peripheral benzodiazepine receptor. Bioorg Med Chem. 2005;13:1811–18.

    Article  CAS  PubMed  Google Scholar 

  33. Fujimura Y, Ikoma Y, Yasuno F, Suhara T, Ota M, Matsumoto R, et al. Quantitative analyses of [18F]FEDAA1106 binding to peripheral benzodiazepine receptors in living human brain. J Nucl Med. 2006;47:43–50.

    CAS  PubMed  Google Scholar 

  34. Briard E, Zoghbi SS, Imaizumi M, Gourley JP, Shetty HU, Hong J, et al. Synthesis and evaluation in monkey of two sensitive [11C]-labeled aryloxyanilide ligands for imaging brain peripheral benzodiazepine receptors in vivo. J Med Chem. 2008;51:17–30.

    Article  CAS  PubMed  Google Scholar 

  35. Kreisl WC, Fujita M, Fujimura Y, Kimura N, Jenko KJ, Kannan P, et al. Comparison of [11C]-(R)-PK 11195 and [11C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: implications for positron emission tomographic imaging of this inflammation biomarker. Neuroimage. 2010;49:2924–32.

    Article  CAS  PubMed  Google Scholar 

  36. Imaizumi M, Briard E, Zoghbi SS, Gourley JP, Hong J, Fujimura Y, et al. Brain and whole-body imaging in nonhuman primates of [11C]PBR28, a promising PET radioligand for peripheral benzodiazepine receptors. Neuroimage. 2008;39:1289–98.

    Article  PubMed  Google Scholar 

  37. Imaizumi M, Kim HJ, Zoghbi SS, Briard E, Hong J, Musachio JL, et al. PET imaging with [11C]PBR28 can localize and quantify upregulated peripheral benzodiazepine receptors associated with cerebral ischemia in rat. Neurosci Lett. 2007;411:200–5.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J. Mapping neuroinflammation in frontotemporal dementia with molecular PET imaging. J Neuroinflammation. 2015. doi:10.1186/s1297401502365.

  39. Brown AK, Fujita M, Fujimura Y, Liow JS, Stabin M, Ryu YH, et al. Radiation dosimetry and biodistribution in monkey and man of [11C]PBR28: a PET radioligand to image inflammation. J Nucl Med. 2007;48:2072–79.

    Article  CAS  PubMed  Google Scholar 

  40. Hirvonen J, Kreisl WC, Fujita M, Dustin I, Khan O, Appel S, et al. Increased in vivo expression of an inflammatory marker in temporal lobe epilepsy. J Nucl Med. 2012;53:234–40.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang MR, Ogawa M, Maeda J, Ito T, Noguchi J, Kumata K, et al. [2-11C]isopropyl-, [1-11C]ethyl-, and [11C]methyl-labeled phenoxyphenylacetamide derivatives as positron emission tomography ligands for the peripheral benzodiazepine receptor: radiosynthesis, uptake, and in vivo binding in brain. J Med Chem. 2006;49:2735–42.

    Article  CAS  PubMed  Google Scholar 

  42. Imaizumi M, Briard E, Zoghbi SS, Gourley JP, Hong J, Musachio JL, et al. Kinetic evaluation in nonhuman primates of two new PET ligands for peripheral benzodiazepine receptors in brain. Synapse. 2007;61:595–05.

    Article  CAS  PubMed  Google Scholar 

  43. Wilson AA, Garcia A, Parkes J, McCormick P, Stephenson KA, Houle S, et al. Radiosynthesis and initial evaluation of [18F]-FEPPA for PET imaging of peripheral benzodiazepine receptors. Nucl Med Biol. 2008;35:305–14.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang X, Paule MG, Newport GD, Liu F, Callicott, R, et al. MicroPET/CT imaging of [18F]-FEPPA in the nonhuman primate: a potential biomarker of pathogenic processes associated with anesthetic-induced neurotoxicity. ISRN Anesthesiol. 2012. doi:10.5402/2012/261640.

  45. Vasdev N, Green DE, Vines DC, McLarty K, Mc Cormick PN, Moran MD, et al. Positron-emission tomography imaging of the TSPO with [18F]FEPPA in a preclinical breast cancer model. Cancer Biother Radiopharm. 2013;28:254–59.

    Article  CAS  PubMed  Google Scholar 

  46. Suridjan I, Rusjan PM, Kenk M, Verhoeff NP, Voineskos AN, Rotenberg D, et al. Quantitative imaging of neuroinflammation in human white matter: a positron emission tomography study with translocator protein 18 kD a radioligand, [18F]-FEPPA. Synapse. 2014;68:536–47.

    Article  CAS  PubMed  Google Scholar 

  47. Suridjan I, Rusjan PM, Voineskos AN, Selvanathan T, Setiawan E, Strafella AP, et al. Neuroinflammation in healthy aging: a PET study using a novel translocator protein 18kDa (TSPO) radioligand, [18F]-FEPPA. Neuroimage. 2014;84:868–75.

    Article  CAS  PubMed  Google Scholar 

  48. Ko JH, Koshimori Y, Mizrahi R, Rusjan P, Wilson AA, Lang AE, et al. Voxel-based imaging of translocator protein 18 kDa (TSPO) in high-resolution PET. J Cereb Blood Flow Metab. 2013;33:348–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mizrahi R, Rusjan PM, Kennedy J, Pollock B, Mulsant B, Suridjan I, et al. Translocator protein (18 kDa) polymorphism (rs6971) explains in-vivo brain binding affinity of the PET radioligand [18F]-FEPPA. J Cereb Blood Flow Metab. 2012;32:968–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Damont A et al. Synthesis of 6-[18F]fluro-PBR28, a novel radiotracer for imaging the TSPO 18KDa with PET. Bioorg Med Chem Lett. 2011;21:4819–22.

    Article  CAS  PubMed  Google Scholar 

  51. Wang M, Gao M, Zhenq QH. Fully automated synthesis of PET TSPO radioligands [11C]DAA1106 and [18F]FEDAA1106. Appl Radiat Isot. 2012;70:965–73.

    Article  CAS  PubMed  Google Scholar 

  52. Moon BS, Kim BS, Park C, Jung JH, Lee YW, Lee HY, et al. [18F]Fluoromethyl-PBR28 as a potential radiotracer for TSPO: preclinical comparison with [11C]PBR28 in a rat model of neuroinflammation. Bioconjug Chem. 2014;25:442–50.

    Article  CAS  PubMed  Google Scholar 

  53. Bereczki D, Fekete I. Vinpocetine for acute ischaemic stroke. Cochrane Database Syst Rev. 2008. doi:10.1002/14651858.

  54. Gulayas B, Halldin C, Vas A, Banati RB, Shchukin E, Finnema S, et al. [11C]vinpocetine: a prospective peripheral benzodiazepine receptor ligand for primate PET studies. J Neurol Sci. 2005;229–230:219–23.

    Article  Google Scholar 

  55. Gulayas B, Halldin C, Sandell J, Karlsson P, Sóvágó J, Kárpáti E, et al. PET studies on the brain uptake and regional distribution of [11C]vinpocetine in human subjects. Acta Neurol Scand. 2002;106:325–32.

    Article  Google Scholar 

  56. Vas A, Shchukin Y, Karrenbauer VD, Cselényi Z, Kostulas K, Hillert J, et al. Functional neuroimaging in multiple sclerosis with radiolabelled glia markers: preliminary comparative PET studies with [11C]vinpocetine and [11C]PK11195 in patients. J Neurol Sci. 2008;264:9–17.

    Article  CAS  PubMed  Google Scholar 

  57. Gulyas B, Vas A, Tóth M, Takano A, Varrone A, Cselényi Z, et al. Age and disease related changes in the translocator protein (TSPO) system in the human brain: positron emission tomography measurements with [11C]vinpocetine. Neuroimage. 2011;56:1111–21.

    Article  CAS  PubMed  Google Scholar 

  58. Gulyás B, Tóth M, Schain M, Airaksinen A, Vas A, Kostulas K, et al. Evolution of microglial activation in ischaemic core and peri-infarct regions after stroke: a PET study with the TSPO molecular imaging biomarker [11C]vinpocetine. J Neurol Sci. 2012;320:110–7.

    Article  PubMed  Google Scholar 

  59. Zhang MR, Kumata K, Maeda J, Yanamoto K, Hatori A, Okada M, et al. [11C]AC-5216: a novel PET ligand for peripheral benzodiazepine receptors in the primate brain. J Nucl Med. 2007;48:1853–61.

  60. Kita A, Kohayakawa H, Kinoshita T, Ochi Y, Nakamichi K, Kurumiya S, et al. Antianxiety and antidepressant-like effects of AC-5216, a novel mitochondrial benzodiazepine receptor ligand. Br J Pharmacol. 2004;142:1059–72.

  61. Okuyama S, Chaki S, Yoshikawa R, Ogawa S, Suzuki Y, Okubo T, et al. Neuropharmacological profile of peripheral benzodiazepine receptor agonists, DAA1097 and DAA1106. Life Sci. 1999;64:1455–64.

  62. Yanamoto K, Zhang MR, Kumata K, Hatori A, Okada M, Suzuki K. In vitro and ex vivo autoradiography studies on peripheral-type benzodiazepine receptor binding using [11C]AC-5216 in normal and kainic acid-lesioned rats. Neuro Sci Lett. 2007;428:59–63.

  63. Amitani M, Zhang MR, Noguchi J, Kumata K, Ito T, Takai N, et al. Blood flow dependence of the intratumoral distribution of peripheral benzodiazepine receptor binding in intact mouse fibrosarcoma. Nucl Med Biol. 2006;33:971–75.

  64. Miyoshi M, Ito H, Arakawa R, Takano H, Hiquchi M, Qkumura M, et al. Quantitative analysis of peripheral benzodiazepine receptor in the human brain using PET with [11C]AC-5216. J Nucl Med. 2009;50:1095–101.

  65. Yanamoto K, Yamasaki T, Kumata K, Yui J, Odawara C, Kawamura K, et al. Evaluation of N-benzyl-N-[11C]methyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9yl)acetamide ([11C]-DAC as a novel translocator protein (18 kDa) radioligand in kainic acid-lesioned rat. Synapse. 2009;63:961–71.

  66. James ML, Fulton RR, Henderson DJ, Eberl S, Meikle SR, Thomson S, et al. Synthesis and in vivo evaluation of a novel peripheral benzodiazepine receptor PET radioligand. Bioorg Med Chem. 2005;13:6188–94.

  67. Boutin H, Chauveau F, Thominiaux C, Grégoire MC, James ML, Trebossen R, et al. [11C]DPA-713: a novel peripheral benzodiazepine receptor PET ligand for in vivo imaging of neuroinflammation. J Nucl Med. 2007;48:573–81.

  68. Endres CJ, Pomper MG, James M, Uzuner O, Hammoud DA, Watkins CC, et al. Initial evaluation of [11C]DPA-713, a novel TSPO PET ligand, in humans. J Nucl Med. 2009;50:1276–82.

  69. Endres CJ, Coughlin JM, Gage KL, Watkins CC, Kassiou M, Pomper MG. Radiation dosimetry and biodistribution of the TSPO ligand [11C]DPA-713 in humans. J Nucl Med. 2012;53:330–35.

  70. Arlicot N, Vercouillie J, Ribeiro MJ, Tauber C, Venel Y, Baulieu JL, et al. Initial evaluation in healthy humans of [18F]DPA-714, a potential PET biomarker for neuroinflammation. Nucl Med Biol. 2012;39:570–8.

  71. James ML, Fulton RR, Vercoullie J, Henderson DJ, Garreau L, Chalon S, et al. DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacologic characterization. J Nucl Med. 2008;49:814–22.

  72. Chauveau F, Van Camp N, Dollé F, Kuhnast B, Hinnen F, Damont A, et al. Comparative evaluation of the translocator protein radioligands [11C]DPA-713, [18F]DPA-714, and [11C]PK11195 in a rat model of acute neuroinflammation. J Nucl Med. 2009;50:468–47.

  73. Corcia P, Tauber C, Vercoullie J, Arlicot N, Prunier C, Praline J, et al. Molecular imaging of microglial activation in amyotrophic lateral sclerosis. PLoS One. 2012;7:e52941.

  74. Golla SS, Boellaard R, Oikonen V, HolfMann A, van Berckel BN, Windhorst AD, et al. Quantification of [18F]DPA-714 binding in the human brain: initial studies in healthy controls and Alzheimer’s disease patients. J Cereb Blood Flow Metab. 2015;35:766–72.

  75. Ribeiro MJ, Vercouillie J, Debiais S, Cottier JP, Bonnaud I, Camus V, et al. Could [18F]DPA-714 PET imaging be interesting to use in the early post-stroke period. EJNMMI Res. 2014. doi:10.1186/s1355001400284.

  76.  Boutin H, Prenant C, Maroy R, Galea J, Greenhalgh AD, Smigova A, et al. [18F]DPA-714: direct comparison with [11C]PK11195 in a model of cerebral ischemia in rats. PLoS One. 2013;8:e56441.

  77. Tang D, Nickels ML, Tantawy MN, Buck JR, Manning HC. Preclinical imaging evaluation of novel TSPO-PET ligand 2-(5,7-Diethyl-2-(4-(2-[18F]fluoroethoxy) phenyl) pyrazolo[1,5-a]pyrimidin-3-yl)-N, N-diethylacetamide ([18F]VUIIS1008) in glioma. Mol Imaging Biol. 2014;16:813–20.

  78. Dollé F, Luus C, Reynolds A, Kassiou M. Radiolabelled molecules for imaging the translocator protein (18 kDa) using positron emission tomography. Curr Med Chem. 2009;16:2899–923.

  79. Boutin H, Chauveau F, Thominiaux C, Kuhnast B, Grégoire MC, Jan S, et al. In vivo imaging of brain lesions with [11C]CLINME, a new PET radioligand of peripheral benzodiazepine receptors. GLIA. 2007;55:1459–68.

  80. Sekimata K, Hatano K, Ogawa M, Abe J, Magata Y, Biggio G, et al. Radiosynthesis and in vivo evaluation of N-[11C]methylated imidazopyridineacetamides as PET tracers for peripheral benzodiazepine receptors. Nucl Med Biol. 2008;35:327–34.

  81. Perrone M, Perrone M, Moon BS, Park HS, Laquintana V, Jung JH, et al. A novel PET imaging probe for the detection and monitoring of translocator protein 18 kDa expression in pathological disorders. Sci Rep. 2016;6:204–22.

  82. Van Camp N, Boisgard R, Kuhnast B, Thézé B, Viel T, Grégoire MC, et al. In vivo imaging of neuroinflammation: a comparative study between [18F]PBR111, [11C]CLINME and [11C]PK11195 in an acute rodent model. Eur J Nucl Med Mol Imaging. 2010;37:962–72.

    Article  PubMed  Google Scholar 

  83. Fookes CJ, Pham TQ, Mattner F, Greguric I, Loc’h C, Liu X, et al. Synthesis and biological evaluation of substituted [18F]imidazo[1,2-a] pyridines and [18F]pyrazolo[1,5-a]pyrimidines for the study of the peripheral benzodiazepine receptor using positronemission tomography. J Med Chem. 2008;51:3700–12.

    Article  CAS  PubMed  Google Scholar 

  84. Thominiaux C, Damont A, Kuhnast B, Demphel S, Helleix S, Boisnard S, et al. Radiosynthesis of 7- chloro-N, N-dimethyl-5-[11C]methyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide, [11C]SSR180575, a novel radioligand for imaging the TSPO (peripheral benzodiazepine receptor) with PET. J Label Compd Radiopharm. 2010;53:767–73.

  85. Chauveau F, Boutin H, Van Camp N, Thominiaux C, Hantraye P, Rivron L, et al. In vivo imaging of neuroinflammation in the rodent brain with [11C] SSR180575, a novel indoleacetamide radioligand of the translocator protein (18 kDa). Eur J Nucl Med Mol Imaging. 2011;38:509–14.

    Article  CAS  PubMed  Google Scholar 

  86. Chau WF, Black AM, Clarke A, Durrant C, Gausemel I, Khan I, et al. Exploration of the impact of stereochemistry on the identification of the novel translocator protein PET imaging agent [18F]GE-180. Nucl Med Biol. 2015;42:711–19.

  87. Wadsworth H, Jones PA, Chau WF, Durrant C, Fouladi N, Passmore J, et al. 18F-GE- 180: a novel fluorine-18 labelle PET tracer for imaging translocator protein 18kDa (TSPO). Bioorg Med Chem Lett. 2012;22:1308–13.

  88. Dickens AM, Vainio S, Marjamäki P, Johansson J, Lehtiniemi P, Rokka J, et al. Detection of microglial activation in an acute model of neuroinflammation using PET and radiotracers [11C](R)-PK11195 and [18F]-GE-180. J Nucl Med. 2014;55:466–72.

  89. Boutin H, Murray K, Pradillo J, Maroy R, Smigova A, Gerhard A, et al. [18F]GE-180: a novel TSPO radiotracer compared to 11C-R-PK11195 in a preclinical model of stroke. Eur J Nucl Med Mol Imaging. 2015;42:503–11.

    Article  CAS  PubMed  Google Scholar 

  90. Tiwari AK, Yui J, Fujinaga M, Kumata K, Shimoda Y, Yamasaki T, et al. Characterization of a novel acetamido-benzoxazolone-based PET ligand for translocator protein (18 kDa) imaging of neuroinflammation in the brain. J Neurochem. 2014;129:712–20.

    Article  CAS  PubMed  Google Scholar 

  91. Tiwari AK, Fujinaga M, Yui J, Yamasaki T, Xie L, Kumata K, et al. Synthesis and evaluation of new [18F]-labelled acetamidobenzoxazolone-based radioligands for imaging of the translocator protein (18 kDa, TSPO) in the brain. Org Biomol Chem. 2014;12:9621–31.

    Article  CAS  PubMed  Google Scholar 

  92. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32:1–5.

  93. Dickstein LP, Zoghbi SS, Fujimura Y, Imaizumi M, Zhang Y, Pike VW, et al. Comparison of [18F]- and [11C]-labeled aryloxyanilide analogs to measure translocator protein in human brain using positron emission tomography. Eur J Nucl Med Mol Imaging. 2011;38:352–7.

    Article  CAS  PubMed  Google Scholar 

  94. Guo Q, Colasanti A, Owen DR, Onega M, Kamalakaran A, Bennacef I, et al. Quantification of the specific translocator protein signal of 18F-PBR111 in healthy humans: a genetic polymorphism effect on in vivo binding. J Nucl Med. 2013;54:1915–23.

  95. Lavisse S, Guillermier M, Hérard AS, Petit F, Delahaye M, Van Camp N, et al. Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging. J Neurosci. 2012;32:10809–18.

  96. Varley J, Brooks DJ, Edison P. Imaging neuroinflammation in Alzheimer’s disease and other dementias: recent advances and future directions. Alzheimers Dement. 2015;11:1110–20.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Yoon Lee.

Ethics declarations

Conflict of Interest

Md. Maqusood Alam, Jihye Lee, and Sang-Yoon Lee declare that they have no conflict of interest. This work was supported by a grant of the Korea Health Technology R&D project through the Korea Health Industry Development Institute (KHIDI), funded by the ministry of health and welfare, Korea (HI14C1135).

Ethical Approval

This work does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.M., Lee, J. & Lee, SY. Recent Progress in the Development of TSPO PET Ligands for Neuroinflammation Imaging in Neurological Diseases. Nucl Med Mol Imaging 51, 283–296 (2017). https://doi.org/10.1007/s13139-017-0475-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-017-0475-8

Keywords

Navigation