Skip to main content

Advertisement

Log in

A semi-analytic accuracy benchmark for Stokes flow in 3-D spherical mantle convection codes

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

One of the main challenges in numerical mantle circulation simulations is the determination of accurate solutions to the Stokes equation in combination with an additional constraint arising from the continuity equation. Here we derive a semi-analytic solution to the Stokes equation in a spherical shell using scalar and vector spherical harmonics. For the simple case of an incompressible flow with uniform viscosity we show that a direct relation exists between the flow velocity and the driving force through a fourth-order ordinary differential equation. The latter can be exploited to derive the forcing term from a prescribed velocity field. This feature lends itself to the design of a self-contained benchmark set-up that can be performed without relying on the numerical output from other codes. We demonstrate the applicability of the benchmark by verifying the convergence behaviour of the Stokes solver in the prototype of a new mantle convection modelling framework for high performance computing based on Hierarchical Hybrid Grids (HHG).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Backus, G.: Poloidal and toroidal fields in geomagnetic field modeling. Rev. Geophys. 24(1), 75 (1986)

    Article  MathSciNet  Google Scholar 

  • Bauer, S., Bunge, H.-P., Drzisga, D., Gmeiner, B., Huber, M., John, L., Mohr, M., Rüde, U., Stengel, H., Waluga, C., Weismüller, J., Wellein, G., Wittmann, M., Wohlmuth, B.: Hybrid parallel multigrid methods for geodynamical simulations. In: Bungartz, H.J., Neumann, P., Wolfgang, E. (eds.) Software Exascale Computing—SPPEXA 2013–2015. Lecture Notes in Computational Science and Engineering, vol. 113, pp. 211–235. Springer, Berlin (2016)

    Chapter  Google Scholar 

  • Bauer, S., Huber, M., Mohr, M., Rüde, U., Wohlmuth, B.: A new matrix-free approach for large-scale geodynamic simulations and its performance. In: Shi, Y., Fu, H., Tian, Y., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J., Sloot, P.M.A. (eds.) Computational Science—ICCS 2018, pp. 17–30. Springer, Cham (2018)

    Chapter  Google Scholar 

  • Bauer, S., Huber, M., Ghelichkhan, S., Mohr, M., Rüde, U., Wohlmuth, B.: Large-scale simulation of mantle convection based on a new matrix-free approach. J. Comput. Sci. 31, 60–76 (2019)

    Article  Google Scholar 

  • Baumgardner, J.R.: Three-dimensional treatment of convective flow in the Earth’s mantle. J. Stat. Phys. 39(5–6), 501–511 (1985)

    Article  Google Scholar 

  • Baumgardner, J.R., Frederickson, P.O.: Icosahedral Discretization of the two-sphere. SIAM J. Numer. Anal. 22(6), 1107–1115 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Bergen, B.K., Hülsemann, F.: Hierarchical hybrid grids: data structures and core algorithms for multigrid. Numer. Linear Algebra Appl. 11(23), 279–291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Bergen, B., Hulsemann, F., Rude U.: Is \(1.7 \times 10^{10}\) unknowns the largest finite element system that can be solved today? In: ACM/IEEE SC 2005 Conference, pp. 5–5. IEEE (2005)

  • Bergen, B., Gradl, T., Hülsemann, F., Rüde, U.: A massively parallel multigrid method for finite elements. Comput. Sci. Eng. 8(6), 56–62 (2006)

    Article  Google Scholar 

  • Bergen, B., Wellein, G., Hülsemann, F., Rüde, U.: Hierarchical hybrid grids: achieving TERAFLOP performance on large scale finite element simulations. Int. J. Parallel Emerg. Distrib. Syst. 22(4), 311–329 (2007)

    Article  MathSciNet  Google Scholar 

  • Bey, J.: Tetrahedral grid refinement. Computing 55(4), 355–378 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Blankenbach, B., Busse, F.H., Christensen, U., Cserepes, L., Gunkel, D., Hansen, U., Harder, H., Jarvis, G., Koch, M., Marquart, G., Moore, D., Olson, P., Schmeling, H., Schnaubelt, T.: A benchmark comparison for mantle convection codes. Geophys. J. Int. 98(1), 23–38 (1989)

    Article  Google Scholar 

  • Boussinesq, J.: Théorie analytique de la chaleur: mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière, vol. 2. Gauthier-Villars, Paris (1903)

    MATH  Google Scholar 

  • Bunge, H.-P.: Numerical Models of Mantle Convection. Dissertation, University of California, Berkeley (1997)

  • Bunge, H.-P., Hagelberg, C.R., Travis, B.J.: Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophys. J. Int. 152(2), 280–301 (2003)

    Article  Google Scholar 

  • Burstedde, C., Stadler, G., Alisic, L., Wilcox, L.C., Tan, E., Gurnis, M., Ghattas, O.: Large-scale adaptive mantle convection simulation. Geophys. J. Int. 192(3), 889–906 (2013)

    Article  Google Scholar 

  • Colli, L., Ghelichkhan, S., Bunge, H.-P., Oeser, J.: Retrodictions of Mid Paleogene mantle flow and dynamic topography in the Atlantic region from compressible high resolution adjoint mantle convection models: sensitivity to deep mantle viscosity and tomographic input model. Gondwana Res. 53, 252–272 (2018)

    Article  Google Scholar 

  • Dziewonski, A.M., Anderson, D.L.: Preliminary reference Earth model. Phys. Earth Planet. Inter. 25(4), 297–356 (1981)

    Article  Google Scholar 

  • Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere (With Applications to Geomathematics). Oxford Science Publication, Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  • Gantmacher, F.R.: The Theory of Matrices. Chelsea, New York (1960)

    Google Scholar 

  • Gerya, T.V., Yuen, D.A.: Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys. Earth Planet. Inter. 140(4), 293–318 (2003)

    Article  Google Scholar 

  • Ghelichkhan, S., Bunge, H.-P.: The compressible adjoint equations in geodynamics: derivation and numerical assessment. GEM Int. J. Geomath. 7(1), 1–30 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghelichkhan, S., Bunge, H.-P.: The adjoint equations for thermochemical compressible mantle convection: derivation and verification by twin experiments. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2220), 20180329 (2018)

    MathSciNet  MATH  Google Scholar 

  • Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., Wohlmuth, B.: Performance and scalability of hierarchical hybrid multigrid solvers for Stokes systems. SIAM J. Sci. Comput. 37(2), C143–C168 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Gmeiner, B., Huber, M., John, L., Rüde, U., Wohlmuth, B.: A quantitative performance study for Stokes solvers at the extreme scale. J. Comput. Sci. 17(3), 509–521 (2016)

    Article  MathSciNet  Google Scholar 

  • Gronwall, T.H.: On the degree of convergence of Laplace’s series. Trans. Am. Math. Soc. 15(1), 1–30 (1914)

    MathSciNet  MATH  Google Scholar 

  • Hager, B.H.: Subducted slabs and the geoid: constraints on mantle rheology and flow. J. Geophys. Res. Solid Earth 89(B7), 6003–6015 (1984)

    Article  Google Scholar 

  • Horbach, A., Bunge, H.-P., Oeser, J.: The adjoint method in geodynamics: derivation from a general operator formulation and application to the initial condition problem in a high resolution mantle circulation model. GEM Int. J. Geomath. 5(2), 163–194 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Ismail-Zadeh, A., Schubert, G., Tsepelev, I., Korotkii, A.: Inverse problem of thermal convection: numerical approach and application to mantle plume restoration. Phys. Earth Planet. Inter. 145(1–4), 99–114 (2004)

    Article  Google Scholar 

  • Jarvis, G.T., Mckenzie, D.P.: Convection in a compressible fluid with infinite Prandtl number. J. Fluid Mech. 96(03), 515 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Kameyama, M., Ichikawa, H., Miyauchi, A.: A linear stability analysis on the onset of thermal convection of a fluid with strongly temperature-dependent viscosity in a spherical shell. Theor. Comput. Fluid Dyn. 27(1–2), 21–40 (2013)

    Article  Google Scholar 

  • Kohl, N., Thönnes, D., Drzisga, D., Bartuschat, D., Rüde, U.: The HyTeG finite-element software framework for scalable multigrid solvers. Int. J. Parallel Emergent Distrib. Syst. 34(5), 477–496 (2019)

    Article  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, Course of Theoretical Physics, vol. 6. Butterworth-Heinemann, London (1987)

    Google Scholar 

  • Oeser, J., Bunge, H.-P., Mohr, M.: Cluster design in the Earth sciences: TETHYS. High Performance Computing Communication-Second International Conference HPCC 2006, Munich, Germany, Volume 4208 of Lecture Notes in Computer Science, pp. 31–40. Springer, Berlin (2006)

  • Panasyuk, S.V., Hager, B.H., Forte, A.M.: Understanding the effects of mantle compressibility on geoid kernels. Geophys. J. Int. 124(1), 121–133 (1996)

    Article  Google Scholar 

  • Popov, I.Y., Lobanov, I.S., Popov, S.I., Popov, A.I., Gerya, T.V.: Practical analytical solutions for benchmarking of 2-D and 3-D geodynamic Stokes problems with variable viscosity. Solid Earth 5(1), 461–476 (2014)

    Article  Google Scholar 

  • Richards, M.A., Hager, B.H.: Geoid anomalies in a dynamic Earth. J. Geophys. Res. Solid Earth 89(B7), 5987–6002 (1984)

    Article  Google Scholar 

  • Ricard, Y., Fleitout, L., Froidevaux, C.: Geoid heights and lithospheric stresses for a dynamic Earth. Ann. Geophys. 2(3), 267–286 (1984)

    Google Scholar 

  • Richards, M.A., Yang, W.-S., Baumgardner, J.R., Bunge, H.-P.: Role of a low-viscosity zone in stabilizing plate tectonics: implications for comparative terrestrial planetology. Geochem. Geophys Geosyst. 2(8) (2001)

  • Rudi, J., Ghattas, O., Malossi, A.C.I., Isaac, T., Stadler, G., Gurnis, M., Staar, P.W.J., Ineichen, Y., Bekas, C., Curioni, A.: An extreme-scale implicit solver for complex PDEs. In: Proceedings of the International Conference High Performance Computing, Networking, Storage and Analysis, SC ’15, SC ’15, pp. 1–12. ACM Press, New York (2015)

  • Tackley, P.J.: Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. Earth-Sci. Rev. 110(1–4), 1–25 (2012)

    Article  Google Scholar 

  • Takeuchi, H., Hasegawa, Y.: Viscosity distribution within the Earth. Geophys. J. Int. 9(5), 503–508 (1965)

    Article  Google Scholar 

  • Van Keken, P.E., King, S.D., Schmeling, H., Christensen, U.R., Neumeister, D., Doin, M.-P.: A comparison of methods for the modeling of thermochemical convection. J. Geophys. Res. 102(B10), 22477–22495 (1997)

    Article  Google Scholar 

  • Weismüller, J.: Development and Application of High Performance Software for Mantle Convection Modeling. Dissertation, Ludwig-Maximilians-Universität München, Fakultät für Geowissenschaften (2016)

  • Weismüller, J., Gmeiner, B., Ghelichkhan, S., Huber, M., John, L., Wohlmuth, B., Rüde, U., Bunge, H.-P.: Fast asthenosphere motion in high-resolution global mantle flow models. Geophys. Res. Lett. 42(18), 7429–7435 (2015)

    Article  Google Scholar 

  • Zhong, S., Liu, X.: The long-wavelength mantle structure and dynamics and implications for large-scale tectonics and volcanism in the Phanerozoic. Gondwana Res. 29(1), 83–104 (2016)

    Article  Google Scholar 

  • Zhong, S., McNamara, A., Tan, E., Moresi, L.-N., Gurnis, M.: A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochem. Geophys. Geosyst. 9(10) (2008)

Download references

Acknowledgements

The authors thank their colleagues and collaborators from the project Terra-Neo—Integrated Co-Design of an Exascale Earth Mantle Modeling Framework which was founded by the German Research Foundation through the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA). HPB thanks R. Hollerbach for bringing this benchmark to his attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Horbach.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horbach, A., Mohr, M. & Bunge, HP. A semi-analytic accuracy benchmark for Stokes flow in 3-D spherical mantle convection codes. Int J Geomath 11, 1 (2020). https://doi.org/10.1007/s13137-019-0137-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13137-019-0137-3

Keywords

Mathematics Subject Classification

Navigation