Skip to main content

Advertisement

Log in

Decomposition of optical flow on the sphere

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

We propose a number of variational regularisation methods for the estimation and decomposition of motion fields on the \(2\)-sphere. While motion estimation is based on the optical flow equation, the presented decomposition models are motivated by recent trends in image analysis. In particular we treat \(u+v\) decomposition as well as hierarchical decomposition. Helmholtz decomposition of motion fields is obtained as a natural by-product of the chosen numerical method based on vector spherical harmonics. All models are tested on time-lapse microscopy data depicting fluorescently labelled endodermal cells of a zebrafish embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://www.csc.univie.ac.at.

References

  • Abhau, J., Belhachmi, Z., Scherzer, O.: On a decomposition model for optical flow. Energy Minimization Methods in Computer Vision and Pattern Recognition. Lecture Notes in Computer Science, pp. 126–139. Springer, Berlin (2009)

    Chapter  Google Scholar 

  • Amat, F., Myers, E.W., Keller, P.J.: Fast and robust optical flow for time-lapse microscopy using super-voxels. Bioinformatics 29(3), 373–380 (2013)

    Article  Google Scholar 

  • Aubert, G., Kornprobst, P.: Mathematical problems in image processing. In: Partial Differential Equations and the Calculus of Variations, With a Foreword by Olivier Faugeras, 2nd edn. Applied Mathematical Sciences, vol. 147. Springer, New York (2006)

  • Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)

    Article  Google Scholar 

  • Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Lévy, B.: Polygon Mesh Processing. A K Peters, Wellesley (2010)

    Google Scholar 

  • Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences. A Scalar, Vectorial, and Tensorial Setup. Springer, Berlin (2009)

    MATH  Google Scholar 

  • Frühauf, F., Pontow, C., Scherzer, O.: Texture enhancing based on variational image decomposition. In: Bergounioux, M. (ed.) Mathematical Image Processing. Springer Proceedings in Mathematics, vol. 5, pp. 127–140. Springer, Berlin (2011)

    Chapter  Google Scholar 

  • Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  • Imiya, A., Sugaya, H., Torii, A., Mochizuki, Y.: Variational analysis of spherical images. In: Gagalowicz, A., Philips, W. (eds.) Computer Analysis of Images and Patterns. Lecture Notes in Computer Science, vol. 3691, pp. 104–111. Springer, Berlin (2005)

    Chapter  Google Scholar 

  • Khan, S., Lefèvre, J., Ammari, H., Baillet, S.: Feature detection and tracking in optical flow on non-flat manifolds. Pattern Recognit. Lett. 32(15), 2047–2052 (2011)

    Article  Google Scholar 

  • Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F.: Stages of embryonic development of the zebrafish. Dev. Dyn. 203(3), 253–310 (1995)

    Article  Google Scholar 

  • Kirisits, C., Lang, L.F., Scherzer, O.: Optical flow on evolving surfaces with an application to the analysis of 4D microscopy data. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM’13: Proceedings of the Fourth International Conference on Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 7893, pp. 246–257. Springer, Berlin (2013a)

    Chapter  Google Scholar 

  • Kirisits, C., Lang, L.F., Scherzer, O.: Optical Flow on Evolving Surfaces with Space and Time Regularisation. University of Vienna, Austria (2013b). Preprint on ArXiv arXiv:1301.0322

  • Kohlberger, T., Memin, E., Schnörr, C.: Variational dense motion estimation using the Helmholtz decomposition. In: Griffin, L.D., Lillholm, M. (eds.) Scale Space Methods in Computer Vision, vol. 2695. Lecture Notes in Computer Science, pp. 432–448. Springer, Berlin (2003)

  • Lefèvre, J., Baillet, S.: Optical flow and advection on 2-Riemannian manifolds: a common framework. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1081–1092 (2008)

    Article  Google Scholar 

  • Lions, J.-L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications I. Die Grundlehren der Mathematischen Wissenschaften. Springer, New York (1972)

    Book  Google Scholar 

  • Megason, S.G., Fraser, S.E.: Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech. Dev. 120(11), 1407–1420 (2003)

    Article  Google Scholar 

  • Melani, C., Campana, M., Lombardot, B., Rizzi, B., Veronesi, F., Zanella, C., Bourgine, P., Mikula, K., Peyriéras, N., Sarti, A.: Cells tracking in a live zebrafish embryo. In: Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2007), pp. 1631–1634 (2007)

  • Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations, vol. 22. University Lecture Series. American Mathematical Society, Providence, RI (2001). The fifteenth Dean Jacqueline B. Lewis memorial lectures

  • Michel, V.: Lectures on Constructive Approximation. Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball. Birkhäuser, New York (2013)

  • Mizoguchi, T., Verkade, H., Heath, J.K., Kuroiwa, A., Kikuchi, Y.: Sdf1/Cxcr4 signaling controls the dorsal migration of endodermal cells during zebrafish gastrulation. Development 135(15), 2521–2529 (2008)

    Article  Google Scholar 

  • Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimization and the \(H^{-1}\)-norm. Multiscale Model. Simul. 1(3), 349–370 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Quelhas, P., Mendonça, A.M., Campilho, A.: Optical flow based Arabidopsis thaliana root meristem cell division detection. In: Campilho, A., Kamel, M. (eds.) Image Analysis and Recognition, vol. 6112. Lecture Notes in Computer Science, pp. 217–226. Springer, Berlin (2010)

  • Schmid, B., Shah, G., Scherf, N., Weber, M., Thierbach, K., Campos Pérez, C., Roeder, I., Aanstad, P., Huisken, J.: High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. Nat. Commun. 4, 2207 (2013)

    Article  Google Scholar 

  • Schnörr, C.: Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class. Int. J. Comput. Vis. 6, 25–38 (1991)

    Article  Google Scholar 

  • Schuster, T., Weickert, J.: On the application of projection methods for computing optical flow fields. Inverse Probl. Imaging 1(4), 673–690 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Tadmor, E., Nezzar, S., Vese, L.: A multiscale image representation using hierarchical \((BV, L^2)\) decompositions. Multiscale Model. Simul. 2(4), 554–579 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Torii, A., Imiya, A., Sugaya, H., Mochizuki, Y.: Optical flow computation for compound eyes: variational analysis of omni-directional views. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds.) Vision, and Artificial Intelligence, vol. 3704. Lecture Notes in Computer Science, pp. 527–536. Springer, Berlin (2005)

  • Vese, L., Osher, S.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput 19(1–3), 553–572 (2003). Special issue in honor of the sixtieth birthday of Stanley Osher

    Google Scholar 

  • Warga, R.M., Nüsslein-Volhard, C.: Origin and development of the zebrafish endoderm. Development 126(4), 827–838 (1999)

    Google Scholar 

  • Weickert, J., Schnörr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. J. Math. Imaging Vis. 14, 245–255 (2001)

    Article  MATH  Google Scholar 

  • Weickert, J., Bruhn, A., Brox, T., Papenberg, N.: A survey on variational optic flow methods for small displacements. In: Scherzer, O. (ed.) Mathematical Models for Registration and Applications to Medical Imaging, vol. 10. Mathematics in Industry, pp. 103–136. Springer, Berlin (2006)

  • Weiskopf, D., Erlebacher, G.: Overview of flow visualization. In: Hansen, C.D., Johnson, C.R. (eds.) The Visualization Handbook, pp. 261–278. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  • Yuan, J., Schnörr, C., Steidl, G.: Simultaneous higher-order optical flow estimation and decomposition. SIAM J. Sci. Comput. 29(6), 2283–2304 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Yuan, J., Schnörr, C., Steidl, G.: Convex Hodge decomposition and regularization of image flows. J. Math. Imaging Vis. 33(2), 169–177 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Pia Aanstad from the University of Innsbruck for sharing her biological insight and for kindly providing the microscopy data. This work has been supported by the Vienna Graduate School in Computational Science (IK I059-N) funded by the University of Vienna. In addition, we acknowledge the support by the Austrian Science Fund (FWF) within the national research networks “Photoacoustic Imaging in Biology and Medicine” (project S10505-N20, Reconstruction Algorithms for PAI) and “Geometry + Simulation” (project S11704, Variational Methods for Imaging on Manifolds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas F. Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirisits, C., Lang, L.F. & Scherzer, O. Decomposition of optical flow on the sphere. Int J Geomath 5, 117–141 (2014). https://doi.org/10.1007/s13137-013-0055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-013-0055-8

Keywords

Mathematics Subject Classification

Navigation