Skip to main content
Log in

Spatiospectral concentration in the Cartesian plane

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

We pose and solve the analogue of Slepian’s time–frequency concentration problem in the two-dimensional plane, for applications in the natural sciences. We determine an orthogonal family of strictly bandlimited functions that are optimally concentrated within a closed region of the plane, or, alternatively, of strictly spacelimited functions that are optimally concentrated in the Fourier domain. The Cartesian Slepian functions can be found by solving a Fredholm integral equation whose associated eigenvalues are a measure of the spatiospectral concentration. Both the spatial and spectral regions of concentration can, in principle, have arbitrary geometry. However, for practical applications of signal representation or spectral analysis such as exist in geophysics or astronomy, in physical space irregular shapes, and in spectral space symmetric domains will usually be preferred. When the concentration domains are circularly symmetric in both spaces, the Slepian functions are also eigenfunctions of a Sturm–Liouville operator, leading to special algorithms for this case, as is well known. Much like their one-dimensional and spherical counterparts with which we discuss them in a common framework, a basis of functions that are simultaneously spatially and spectrally localized on arbitrary Cartesian domains will be of great utility in many scientific disciplines, but especially in the geosciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  • Albertella A., Sacerdote F.: Using Slepian functions for local geodetic computations. Boll. Geod. Sci. Aff. 60(1), 1–14 (2001)

    Google Scholar 

  • Albertella A., Sansò F., Sneeuw N.: Band-limited functions on a bounded spherical domain: the Slepian problem on the sphere. J. Geod. 73, 436–447 (1999)

    Article  MATH  Google Scholar 

  • Amirbekyan A., Michel V., Simons F.J.: Parameterizing surface-wave tomographic models with harmonic spherical splines. Geophys. J. Int. 174(2), 617 (2008). doi:10.1111/j.1365-246X.2008.03809.x

    Article  Google Scholar 

  • Aronszajn N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  • Audet P., Mareschal J.-C.: Wavelet analysis of the coherence between Bouguer gravity and topography: application to the elastic thickness anisotropy in the Canadian Shield. Geophys. J. Int. 168, 287–298 (2007). doi:10.1111/j.1365-246X.2006.03231.x

    Article  Google Scholar 

  • Bell B., Percival D.B., Walden A.T.: Calculating Thomson’s spectral multitapers by inverse iteration. J. Comput. Graph. Stat. 2(1), 119–130 (1993)

    MathSciNet  Google Scholar 

  • Bertero M., De Mol C., Pike E.R.: Linear inverse problems with discrete data. I. General formulation and singular system analysis. Inverse Probl. 1, 301–330 (1985a). doi:10.1088/0266-5611/1/4/004

    Article  MathSciNet  MATH  Google Scholar 

  • Bertero M., De Mol C., Pike E.R.: Linear inverse problems with discrete data. II. Stability and regularisation. Inverse Probl. 1, 301–330 (1985b). doi:10.1088/0266-5611/1/4/004

    Article  MathSciNet  MATH  Google Scholar 

  • Beylkin G., Monzón L.: On generalized Gaussian quadratures for exponentials and their applications. Appl. Comput. Harmon. Anal. 12, 332–372 (2002). doi:10.1006/acha.2002.0380

    Article  MathSciNet  MATH  Google Scholar 

  • Beylkin G., Sandberg K.: Wave propagation using bases for bandlimited functions. Wave Motion 41(3), 263–291 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Borcea L., Papanicolaou G., Vasquez F.G.: Edge illumination and imaging of extended reflectors. SIAM J. Imaging Sci. 1(1), 75–114 (2008). doi:10.1137/07069290X

    Article  MathSciNet  MATH  Google Scholar 

  • Bouwkamp C.J.: On spheroidal wave functions of order zero. J. Math. Phys. 26, 79–92 (1947)

    MathSciNet  MATH  Google Scholar 

  • Boyd J.P.: Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Appl. Comput. Harmon. Anal. 15(2), 168–176 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd J.P.: Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms. J. Comput. Phys. 199(2), 688–716 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Brander O., DeFacio B.: A generalisation of Slepian’s solution for the singular value decomposition of filtered Fourier transforms. Inverse Probl. 2, L9–L14 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Bronez T.P.: Spectral estimation of irregularly sampled multidimensional processes by generalized prolate spheroidal sequences. IEEE Trans. Acoust. Speech Signal Process. 36(12), 1862–1873 (1988)

    Article  MATH  Google Scholar 

  • Chambodut A., Panet I., Mandea M., Diament M., Holschneider M., Jamet O.: Wavelet frames: an alternative to spherical harmonic representation of potential fields. Geophys. J. Int. 163(3), 875–899 (2005)

    Article  Google Scholar 

  • Chen Q.Y., Gottlieb D., Hesthaven J.S.: Spectral methods based on prolate spheroidal wave functions for hyperbolic PDEs. Wave Motion 43(5), 1912–1933 (2005)

    MathSciNet  MATH  Google Scholar 

  • Coifman R.R., Lafon S.: Geometric harmonics: a novel tool for multiscale out-of-sample extension of empirical functions. Appl. Comput. Harmon. Anal. 21, 31–52 (2006). doi:10.1016/j.acha.2005.07.005

    Article  MathSciNet  MATH  Google Scholar 

  • Dahlen F.A., Simons F.J.: Spectral estimation on a sphere in geophysics and cosmology. Geophys. J. Int. 174, 774–807 (2008). doi:10.1111/j.1365-246X.2008.03854.x

    Article  Google Scholar 

  • Dahlen F.A., Tromp J.: Theoretical Global Seismology. Princeton University Press, Princeton, NJ (1998)

    Google Scholar 

  • Daubechies I.: Time–frequency localization operators: a geometric phase space approach. IEEE Trans. Inform. Theory 34, 605–612 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies, I.: Ten Lectures on Wavelets, vol. 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial & Applied Mathematics, Philadelphia, PA (1992)

  • Daubechies I., Paul T.: Time–frequency localisation operators—a geometric phase space approach. II. The use of dilations. Inverse Probl. 4(3), 661–680 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • de Villiers G.D., Marchaud F.B.T., Pike E.R.: Generalized Gaussian quadrature applied to an inverse problem in antenna theory. Inverse Probl. 17, 1163–1179 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • de Villiers G.D., Marchaud F.B.T., Pike E.R.: Generalized Gaussian quadrature applied to an inverse problem in antenna theory: II. The two-dimensional case with circular symmetry. Inverse Probl. 19, 755–778 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Delsarte P., Janssen A.J.E.M., Vries L.B.: Discrete prolate spheroidal wave functions and interpolation. SIAM J. Appl. Math. 45(4), 641–650 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho D.L., Stark P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906–931 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Edmonds A.R.: Angular Momentum in Quantum Mechanics. Princeton University Press, Princeton, NJ (1996)

    MATH  Google Scholar 

  • Evans A.J., Andrews-Hanna J.C., Zuber M.T.: Geophysical limitations on the erosion history within Arabia Terra. J. Geophys. Res. 115, E05007 (2010). doi:10.1029/2009JE003469

    Article  Google Scholar 

  • Faÿ G., Guilloux F., Betoule M., Cardoso J.-F., Delabrouille J., Jeune M.L.: CMB power spectrum estimation using wavelets. Phys. Rev. D 78, 083013 (2008). doi:10.1103/PhysRevD.78.083013

    Article  Google Scholar 

  • Fengler M.J., Freeden W., Kohlhaas A., Michel V., Peters T.: Wavelet modeling of regional and temporal variations of the earth’s gravitational potential observed by GRACE. J. Geod. 81(1), 5–15 (2007). doi:10.1007/s00190-006-0040-1

    MATH  Google Scholar 

  • Flandrin P.: Temps-Fréquence, 2nd edn. Hermès, Paris (1998)

    MATH  Google Scholar 

  • Freeden W., Michel V.: Constructive approximation and numerical methods in geodetic research today—an attempt at a categorization based on an uncertainty principle. J. Geod. 73(9), 452–465 (1999)

    Article  MATH  Google Scholar 

  • Freeden W., Windheuser U.: Combined spherical harmonic and wavelet expansion—a future concept in Earth’s gravitational determination. Appl. Comput. Harmon. Anal. 4, 1–37 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W., Gervens T., Schreiner M.: Constructive Approximation on the Sphere. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  • Golub G.H., van Loan C.F.: Matrix Computations, 2nd edn. Johns Hopkins University Press, Baltimore, MD (1989)

    MATH  Google Scholar 

  • Gradshteyn I.S., Ryzhik I.M.: Tables of Integrals, Series, and Products, 6th edn. Academic Press, San Diego, CA (2000)

    Google Scholar 

  • Grünbaum F.A.: Eigenvectors of a Toeplitz matrix: discrete version of the prolate spheroidal wave functions. SIAM J. Algebraic Discrete Methods 2(2), 136–141 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Grünbaum F.A., Longhi L., Perlstadt M.: Differential operators commuting with finite convolution integral operators: some non-Abelian examples. SIAM J. Appl. Math. 42(5), 941–955 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Hall B.C., Mitchell J.J.: Coherent states on spheres. J. Math. Phys. 43(3), 1211–1236 (2002)

    Article  MathSciNet  Google Scholar 

  • Han S.-C.: Improved regional gravity fields on the Moon from Lunar Prospector tracking data by means of localized spherical harmonic functions. J. Geophys. Res. 113, E11012 (2008). doi:10.1029/2008JE003166

    Article  Google Scholar 

  • Han S.-C., Ditmar P.: Localized spectral analysis of global satellite gravity fields for recovering time-variable mass redistributions. J. Geod. 82(7), 423–430 (2007). doi:10.1007/s00190-007-0194-5

    Google Scholar 

  • Han S.-C., Simons F.J.: Spatiospectral localization of global geopotential fields from the Gravity Recovery and Climate Experiment GRACE reveals the coseismic gravity change owing to the 2004 Sumatra-Andaman earthquake. J. Geophys. Res. 113, B01405 (2008). doi:10.1029/2007JB004927

    Article  Google Scholar 

  • Han S.-C., Rowlands D.D., Luthcke S.B., Lemoine F.G.: Localized analysis of satellite tracking data for studying time-variable Earth’s gravity fields. J. Geophys. Res. 113, B06401 (2008a). doi:10.1029/2007JB005218

    Article  Google Scholar 

  • Han S.-C., Sauber J., Luthcke S.B., Ji C., Pollitz F.F.: Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE inter-satellite tracking data. J. Geophys. Res. 113, B11413 (2008b). doi:10.1029/2008JB005705

    Article  Google Scholar 

  • Han S.-C., Mazarico E., Lemoine F.G.: Improved nearside gravity field of the Moon by localizing the power law constraint. Geophys. Res. Lett. 36, L11203 (2009). doi:10.1029/2009GL038556

    Article  Google Scholar 

  • Hanssen A.: Multidimensional multitaper spectral estimation. Signal Process. 58, 327–332 (1997)

    Article  MATH  Google Scholar 

  • Harig C., Zhong S., Simons F.J.: Constraints on upper-mantle viscosity inferred from the flow-induced pressure gradient across a continental keel. Geochem. Geophys. Geosyst. 11(6), Q06004 (2010). doi:10.1029/2010GC003038

    Article  Google Scholar 

  • Holschneider M., Chambodut A., Mandea M.: From global to regional analysis of the magnetic field on the sphere using wavelet frames. Phys. Earth Planet. Interiors 135, 107–124 (2003)

    Article  Google Scholar 

  • Jackson J.I., Meyer C.H., Nishimura D.G., Macovski A.: Selection of a convolution function for Fourier inversion using gridding. IEEE Trans. Med. Imaging 10(3), 473–478 (1991)

    Article  Google Scholar 

  • Jeffreys H., Jeffreys B.S.: Methods of Mathematical Physics, 3rd edn. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  • Karoui A., Moumni T.: New efficient methods of computing the prolate spheroidal wave functions and their corresponding eigenvalues. Appl. Comput. Harmon. Anal. 24(3), 269–289 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kennedy, R.A., Zhang, W., Abhayapala, T.D.: Spherical harmonic analysis and model-limited extrapolation on the sphere: integral equation formulation. In: Proceedings of the IEEE International Conference on Signal Processing and Communication Systems, pp. 1–6. IEEE (2008). doi:10.1109/ICSPCS.2008.4813702

  • Khare K., George N.: Sampling theory approach to prolate spheroidal wavefunctions. J. Phys. A Math. Gen. 36, 10011–10021 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Kido M., Yuen D.A., Vincent A.P.: Continuous wavelet-like filter for a spherical surface and its application to localized admittance function on Mars. Phys. Earth Planet. Interiors 135, 1–14 (2003)

    Article  Google Scholar 

  • Kirby J.F., Swain C.J.: Mapping the mechanical anisotropy of the lithosphere using a 2D wavelet coherence, and its application to Australia. Phys. Earth Planet. Interiors 158(2–4), 122–138 (2006). doi:10.1016/j.pepi.2006.03.022

    Article  Google Scholar 

  • Kowalski K., Rembieliński J.: Quantum mechanics on a sphere and coherent states. J. Phys. A Math. Gen. 33, 6035–6048 (2000)

    Article  MATH  Google Scholar 

  • Lai M.J., Shum C.K., Baramidze V., Wenston P.: Triangulated spherical splines for geopotential reconstruction. J. Geod. 83, 695–708 (2009). doi:10.1007/s00190-008-0283-0

    Article  Google Scholar 

  • Landau H.J.: On the eigenvalue behavior of certain convolution equations. Trans. Am. Math. Soc. 115, 242–256 (1965)

    Article  MATH  Google Scholar 

  • Landau H.J., Pollak H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—II. Bell Syst. Tech. J. 40(1), 65–84 (1961)

    MathSciNet  MATH  Google Scholar 

  • Landau H.J., Pollak H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—III. The dimension of the space of essentially time- and band-limited signals. Bell Syst. Tech. J. 41(4), 1295–1336 (1962)

    MathSciNet  MATH  Google Scholar 

  • Lilly J.M., Park J.: Multiwavelet spectral and polarization analyses of seismic records. Geophys. J. Int. 122, 1001–1021 (1995)

    Article  Google Scholar 

  • Lindquist M.A., Zhang C.H., Glover G., Shepp L., Yang Q.X.: A generalization of the two-dimensional prolate spheroidal wave function method for nonrectilinear MRI data acquisition methods. IEEE Trans. Image Process. 15(9), 2792–2804 (2006). doi:10.1109/TIP.2006.877314

    Article  MathSciNet  Google Scholar 

  • Liu T.-C., van Veen B.D.: Multiple window based minimum variance spectrum estimation for multidimensional random fields. IEEE Trans. Signal Process. 40(3), 578–589 (1992). doi:10.1109/78.120801

    Article  Google Scholar 

  • Ma J., Rokhlin V., Wandzura S.: Generalized Gaussian quadrature rules for systems of arbitrary functions. SIAM J. Numer. Anal. 33(3), 971–996 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Mallat S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego, CA (1998)

    MATH  Google Scholar 

  • Maniar H., Mitra P.P.: The concentration problem for vector fields. Int. J. Bioelectromagn. 7(1), 142–145 (2005)

    Google Scholar 

  • Marinucci D., Pietrobon D., Balbi A., Baldi P., Cabella P., Kerkyacharian G., Natoli P., Picard D., Vittorio N.: Spherical needlets for cosmic microwave background data analysis. Monthly Notices R. Astron. Soc. 383(2), 539–545 (2008). doi:10.1111/j.1365-2966.2007.12550.x

    Google Scholar 

  • McEwen J.D., Hobson M.P., Mortlock D.J., Lasenby A.N.: Fast directional continuous spherical wavelet transform algorithms. IEEE Trans. Signal Process. 55(2), 520–529 (2007)

    Article  MathSciNet  Google Scholar 

  • Michel V., Wolf K.: Numerical aspects of a spline-based multiresolution recovery of the harmonic mass density out of gravity functionals. Geophys. J. Int. 173, 1–16 (2008). doi:10.1111/j.1365-246X.2007.03700.x

    Article  Google Scholar 

  • Miranian L.: Slepian functions on the sphere, generalized Gaussian quadrature rule. Inverse Probl. 20, 877–892 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Mitra P.P., Maniar H.: Concentration maximization and local basis expansions (LBEX) for linear inverse problems. IEEE Trans. Biomed Eng. 53(9), 1775–1782 (2006)

    Article  Google Scholar 

  • Moore I.C., Cada M.: Prolate spheroidal wave functions, an introduction to the Slepian series and its properties. Appl. Comput. Harmon. Anal. 16, 208–230 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Narcowich F.J., Ward J.D.: Nonstationary wavelets on the m-sphere for scattered data. Appl. Comput. Harmon. Anal. 3, 324–336 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Nashed M.Z., Walter G.G.: General sampling theorems for functions in Reproducing Kernel Hilbert Spaces. Math. Control Signals Syst. 4, 363–390 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Nyström E.J.: Über die praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben. Acta Math. 54, 185–204 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  • Olhede S., Walden A.T.: Generalized Morse wavelets. IEEE Trans. Signal Process. 50(11), 2661–2670 (2002)

    Article  MathSciNet  Google Scholar 

  • Olhede S.C., Metikas G.: The monogenic wavelet transform. IEEE Trans. Signal Process. 57(9), 3426–3441 (2009). doi:10.1109/TSP.2009.2023397

    Article  MathSciNet  Google Scholar 

  • Panet I., Chambodut A., Diament M., Holschneider M., Jamet O.: New insights on intraplate volcanism in French Polynesia from wavelet analysis of GRACE, CHAMP, and sea surface data. J. Geophys. Res. 111, B09403 (2006). doi:10.1029/2005JB004141

    Article  Google Scholar 

  • Papoulis A.: A new algorithm in spectral analysis and band-limited extrapolation. IEEE-CS 22(9), 735–742 (1975)

    MathSciNet  Google Scholar 

  • Parks, T.W., Shenoy, R.G.: Time–frequency concentrated basis functions. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 2459–2462. IEEE (1990)

  • Parlett B.N., Wu W.-D.: Eigenvector matrices of symmetric tridiagonals. Numer. Math. 44, 103–110 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Percival D.B., Walden A.T.: Spectral Analysis for Physical Applications, Multitaper and Conventional Univariate Techniques. Cambridge University Press, New York (1993)

    Book  MATH  Google Scholar 

  • Percival D.B., Walden A.T.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  • Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd edn. Cambridge University Press, New York (1992)

    Google Scholar 

  • Ramesh P.S., Lean M.H.: Accurate integration of singular kernels in boundary integral formulations for Helmholtz equation. Int. J. Numer. Methods Eng. 31, 1055–1068 (1991)

    Article  MATH  Google Scholar 

  • Riedel K.S., Sidorenko A.: Minimum bias multiple taper spectral estimation. IEEE Trans. Signal Process. 43(1), 188–195 (1995)

    Article  Google Scholar 

  • Saito N.: Data analysis and representation on a general domain using eigenfunctions of Laplacian. Appl. Comput. Harmon. Anal. 25, 68–97 (2007). doi:10.1016/j.acha.2007.09.005

    Article  Google Scholar 

  • Schmidt M., Han S.-C., Kusche J., Sanchez L., Shum C.K.: Regional high-resolution spatiotemporal gravity modeling from GRACE data using spherical wavelets. Geophys. Res. Lett. 33(8), L0840 (2006). doi:10.1029/2005GL025509

    Google Scholar 

  • Schmidt M., Fengler M., Mayer-Gürr T., Eicker A., Kusche J., Sánchez L., Han S.-C.: Regional gravity modeling in terms of spherical base functions. J. Geod. 81(1), 17–38 (2007). doi:10.1007/s00190-006-0101-5

    MATH  Google Scholar 

  • Schott, J.-J., Thébault, E.: Modelling the Earths magnetic field from global to regional scales. In: Mandea, M., Korte, M. (eds.) Geomagnetic Observations and Models, vol. 5 of IAGA Special Sopron Book Series. Springer, Berlin (2011)

  • Shepp L., Zhang C.-H.: Fast functional magnetic resonance imaging via prolate wavelets. Appl. Comput. Harmon. Anal. 9(2), 99–119 (2000). doi:10.1006/acha.2000.0302

    Article  MathSciNet  MATH  Google Scholar 

  • Shkolnisky Y.: Prolate spheroidal wave functions on a disc—integration and approximation of two-dimensional bandlimited functions. Appl. Comput. Harmon. Anal. 22, 235–256 (2007). doi:10.1016/j.acha.2006.07.002

    Article  MathSciNet  MATH  Google Scholar 

  • Shkolnisky Y., Tygert M., Rokhlin V.: Approximation of bandlimited functions. Appl. Comput. Harmon. Anal. 21, 413–420 (2006). doi:10.1016/j.acha.2006.05.001

    Article  MathSciNet  MATH  Google Scholar 

  • Simons, F.J.: Slepian functions and their use in signal estimation and spectral analysis. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, chap. 30, pp. 891–923. Springer, Heidelberg (2010). doi:10.1007/978-3-642-01546-5_30

  • Simons F.J., Dahlen F.A.: Spherical Slepian functions and the polar gap in geodesy. Geophys. J. Int. 166, 1039–1061 (2006). doi:10.1111/j.1365-246X.2006.03065.x

    Article  Google Scholar 

  • Simons, F.J., Dahlen, F.A.: A spatiospectral localization approach to estimating potential fields on the surface of a sphere from noisy, incomplete data taken at satellite altitudes. In: Van de Ville, D., Goyal, V.K., Papadakis, M. (eds.) Wavelets XII, vol. 6701, p. 670117. SPIE (2007). doi:10.1117/12.732406

  • Simons, F.J., van der Hilst, R.D., Zuber, M.T.: Spatio-spectral localization of isostatic coherence anisotropy in Australia and its relation to seismic anisotropy: Implications for lithospheric deformation. J. Geophys. Res. 108(B5) 2250. doi:10.1029/2001JB000704

  • Simons F.J., Dahlen F.A., Wieczorek M.A.: Spatiospectral concentration on a sphere. SIAM Rev. 48(3), 504–536 (2006). doi:10.1137/S0036144504445765

    Article  MathSciNet  MATH  Google Scholar 

  • Simons, F.J., Hawthorne, J.C., Beggan, C.D.: Efficient analysis and representation of geophysical processes using localized spherical basis functions. In: Goyal, V.K., Papadakis, M., Van de Ville, D. (eds.) Wavelets XIII, vol. 7446, p. 74460G. SPIE (2009). doi:10.1117/12.825730

  • Simons M., Solomon S.C., Hager B.H.: Localization of gravity and topography: constraints on the tectonics and mantle dynamics of Venus. Geophys. J. Int. 131, 24–44 (1997)

    Article  Google Scholar 

  • Slepian D.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell Syst. Tech. J. 43(6), 3009–3057 (1964)

    MathSciNet  MATH  Google Scholar 

  • Slepian D.: On bandwidth. Proc. IEEE 64(3), 292–300 (1976)

    Article  MathSciNet  Google Scholar 

  • Slepian D.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—V. The discrete case. Bell Syst. Tech. J. 57, 1371–1429 (1978)

    MATH  Google Scholar 

  • Slepian D.: Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25(3), 379–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Slepian D., Pollak H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—I. Bell Syst. Tech. J. 40(1), 43–63 (1961)

    MathSciNet  MATH  Google Scholar 

  • Slepian D., Sonnenblick E.: Eigenvalues associated with prolate spheroidal wave functions of zero order. Bell Syst. Tech. J. 44(8), 1745–1759 (1965)

    MathSciNet  MATH  Google Scholar 

  • Tegmark M.: A method for extracting maximum resolution power spectra from galaxy surveys. Astrophys. J. 455, 429–438 (1995)

    Article  Google Scholar 

  • Tegmark M.: A method for extracting maximum resolution power spectra from microwave sky maps. Monthly Notices R. Astron. Soc. 280, 299–308 (1996)

    Google Scholar 

  • Thomson D.J.: Spectrum estimation and harmonic analysis. Proc. IEEE 70(9), 1055–1096 (1982)

    Article  Google Scholar 

  • Thomson D.J.: Quadratic-inverse spectrum estimates: applications to paleoclimatology. Phil. Trans. R. Soc. Lond. Ser. A 332(1627), 539–597 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Tricomi F.G.: Integral Equations, 5th edn. Interscience, New York (1970)

    Google Scholar 

  • VanDe Ville D., Unser M.: Complex wavelet bases, steerability, and the Marr-like pyramid. IEEE Trans. Image Process. 17(11), 2063–2080 (2008). doi:10.1109/TIP.2008.2004797

    Article  MathSciNet  Google Scholar 

  • Van De Ville D., Philips W., Lemahieu I.: On the N-dimensional extension of the discrete prolate spheroidal window. IEEE Trans. Signal Process. 9(3), 89–91 (2002)

    Google Scholar 

  • Walden A.T.: Improved low-frequency decay estimation using the multitaper spectral-analysis method. Geophys. Prospect. 38, 61–86 (1990)

    Article  Google Scholar 

  • Walter G., Soleski T.: A new friendly method of computing prolate spheroidal wave functions and wavelets. Appl. Comput. Harmon. Anal. 19, 432–443 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Walter G.G., Shen X.: Wavelets based on prolate spheroidal wave functions. J. Fourier Anal. Appl. 10(1), 1–26 (2004). doi:10.1007/s00041-004-8001-7

    Article  MathSciNet  MATH  Google Scholar 

  • Walter G.G., Shen X.: Wavelet like behavior of Slepian functions and their use in density estimation. Commun. Stat. Theory Methods 34(3), 687–711 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Walter G.G., Soleski T.: Error estimates for the PSWF method in MRI. Contemp. Math. 451, 262 (2008)

    MathSciNet  Google Scholar 

  • Wei, L., Kennedy, R.A., Lamahewa, T.A.: Signal concentration on unit sphere: an azimuthally moment weighting approach. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 1–4. IEEE (2010)

  • Wieczorek M.A., Simons F.J.: Localized spectral analysis on the sphere. Geophys. J. Int. 162(3), 655–675 (2005). doi:10.1111/j.1365-246X.2005.02687.x

    Article  Google Scholar 

  • Wieczorek M.A., Simons F.J.: Minimum-variance spectral analysis on the sphere. J. Fourier Anal. Appl. 13(6), 665–692 (2007). doi:10.1007/s00041-006-6904-1

    Article  MathSciNet  MATH  Google Scholar 

  • Wingham D.J.: The reconstruction of a band-limited function and its Fourier transform from a finite number of samples at arbitrary locations by Singular Value Decomposition. IEEE Trans. Signal Process. 40(3), 559–570 (1992). doi:10.1109/78.120799

    Article  Google Scholar 

  • Xiao H., Rokhlin V., Yarvin N.: Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Probl. 17, 805–838 (2001). doi:10.1088/0266-5611/17/4/315

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Q.X., Lindquist M.A., Shepp L., Zhang C.-H., Wang J., Smith M.B.: Two dimensional prolate spheroidal wave functions for MRI. J. Magn. Reson. 158, 43–51 (2002)

    Article  Google Scholar 

  • Yao K.: Application of reproducing kernel Hilbert spaces—bandlimited signal models. Inf. Control 11(4), 429–444 (1967)

    Article  MATH  Google Scholar 

  • Zhang X.: Wavenumber spectrum of very short wind waves: an application of two-dimensional Slepian windows to spectral estimation. J. Atmos. Ocean. Technol. 11, 489–505 (1994)

    Article  Google Scholar 

  • Zhou Y., Rushforth C.K., Frost R.L.: Singular value decomposition, singular vectors, and the discrete prolate spheroidal sequences. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 9(1), 92–95 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik J. Simons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simons, F.J., Wang, D.V. Spatiospectral concentration in the Cartesian plane. Int J Geomath 2, 1–36 (2011). https://doi.org/10.1007/s13137-011-0016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-011-0016-z

Keywords

Mathematics Subject Classification (2000)

Navigation