Skip to main content
Log in

Experimental study of freak waves due to three-dimensional island terrain in random wave

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

An experimental study is carried out for waves passing an isolated reef terrain in a wave tank. A three-dimensional model of a representative and isolated reef terrain in the West Pacific is built. Random wave trains with various periods and wave heights are generated by a wave maker using the improved JONSWAP spectrum. It is observed that there are different kinds of generation processes and waveforms of freak waves. The freak wave factor Hm/Hs (where Hm is the maximum wave height of wave series, and Hs is significant wave height) is analyzed in detail, in terms of the skewness, kurtosis and water depth, as well as the relationship between freak wave height Hfr and skewness. The freak wave factor Hm/Hs is found to be in positive correlation with the kurtosis, while larger Hfr tends to be related with bigger skewness. The rapid variation of water depth, such as slope and seamount, contributes to the occurrence probability of freak waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cherneva Z, Soares C G. 2014. Time-frequency analysis of the sea state with the Andrea freak wave. Nat Hazards and Earth System Sciences, 14(12): 3143–3150, doi: 10.5194/nhess-14-31432014

    Article  Google Scholar 

  • Cui Cheng, Zhang Ningchuan, Kang Haigui, et al. 2013. An experimental and numerical study of the freak wave speed. Acta Oceanologica Sinica, 32(5): 51–56, doi: 10.1007/s13131-0130313-5

    Article  Google Scholar 

  • Cui Cheng, Zhang Ningchuan, Yu Yuxiu, et al. 2012. Numerical study on the effects of uneven bottom topography on freak waves. Ocean Engineering, 54: 132–141, doi: 10.1016/j.oceaneng. 2012.06.021

    Article  Google Scholar 

  • Dean R G. 1990. Freak waves: a possible explanation. In: Tørum A, Gudmestad O T, eds. Water Wave Kinematics. Dordrecht: Springer, 609–612

    Chapter  Google Scholar 

  • Deng Yanfei, Yang Jianmin, Tian Xinliang, et al. 2016. An experimental study on deterministic freak waves: generation, propagation and local energy. Ocean Engineering, 118: 83–92, doi: 10.1016/j.oceaneng.2016.02.025

    Article  Google Scholar 

  • Didenkulova I. 2011. Shapes of freak waves in the coastal zone of the Baltic sea (Tallinn bay). Boreal Environment Research, 16(SA): 138–148

    Google Scholar 

  • Dysthe K, Krogstad H E, Müller P. 2008. Oceanic rogue waves. Annual Review of Fluid Mechanics, 40(1): 287–310, doi: 10.1146/annurev.fluid.40.111406.102203

    Article  Google Scholar 

  • Glejin J, Kumar V S, Nair T M B, et al. 2014. Freak waves off Ratnagiri, west coast of India. Indian Journal of Geo-marine Sciences, 43(7): 1339–1342

    Google Scholar 

  • Goda Y. 1999. A comparative review on the functional forms of directional wave spectrum. Coastal Engineering J, 41(1): 1–20, doi: 10.1142/S0578563499000024

    Article  Google Scholar 

  • Gramstad O, Zeng H, Trulsen K, et al. 2013. Freak waves in weakly nonlinear unidirectional wave trains over a sloping bottom in shallow water. Physics of Fluids, 25(12): 122103, doi: 10.1063/1.4847035

    Article  Google Scholar 

  • Haver S. 2004. A possible freak wave event measured at the Draupner jacket January 1 1995. In: Olagnon M, Prevosto M, eds. Rogue Waves 2004. Brest, France: Ifremer, 1–8

    Google Scholar 

  • Kharif C, Pelinovsky E, Slunyaev A. 2009. Rogue Waves in the Ocean. Berlin, Heidelberg: Springer, 1–30

    Book  Google Scholar 

  • Lawton G. 2001. Monsters of the deep. New Scientist, 170(2297): 28–32

    Google Scholar 

  • Li Jinxuan, Li Pengfei, Liu Shuxue. 2013. Observations of freak waves in random wave field in 2D experimental wave flume. China Ocean Engineering, 27(5): 659–670, doi: 10.1007/s13344-013-0055-3

    Article  Google Scholar 

  • Li Jinxuan, Yang Jiqing, Liu Shuxue, et al. 2015. Wave groupiness analysis of the process of 2D freak wave generation in random wave trains. Ocean Engineering, 104: 480–488, doi: 10.1016/j.oceaneng.2015.05.034

    Article  Google Scholar 

  • Liu Zanqiang, Zhang Ningchuan, Yu Yuxiu. 2011. An efficient focusing model for generation of freak waves. Acta Oceanologica Sinica, 30(6): 19–26, doi: 10.1007/s13131-011-0157-9

    Article  Google Scholar 

  • Lu Wenyue, Yang Jianmin, Tao Longbin. 2016. Numerical study of the energy structure of super rogue waves. Ocean Engineering, 113: 295–307, doi: 10.1016/j.oceaneng.2015.11.006

    Article  Google Scholar 

  • Mori N, Liu P C, Yasuda T. 2002. Analysis of freak wave measurements in the sea of Japan. Ocean Engineering, 29(11): 1399–1414, doi: 10.1016/S0029-8018(01)00073-7

    Article  Google Scholar 

  • Onorato M, Osborne A R, Serio M, et al. 2006. Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves. European Journal of Mechanics-B/Fluids, 25(5): 586–601, doi: 10.1016/j.euromechflu. 2006.01.002

    Article  Google Scholar 

  • Pei Yuguo, Zhang Ningchuan, Zhang Yunqiu. 2007. Efficient generation of freak waves in laboratory. China Ocean Engineering, 21(3): 515–523

    Google Scholar 

  • Qin Hao, Tang Wenyong, Hu Zhe, et al. 2017. Structural response of deck structures on the green water event caused by freak waves. Journal of Fluids and Structures, 68: 322–338, doi: 10.1016/j. jfluidstructs.2016.11.009

    Article  Google Scholar 

  • Sergeeva A, Pelinovsky E, Talipova T. 2011. Nonlinear random wave field in shallow water: variable Korteweg-de Vries framework. Natural Hazards and Earth System Sciences, 11(2): 323–330, doi: 10.5194/nhess-11-323-2011

    Article  Google Scholar 

  • Shemer L, Sergeeva A. 2009. An experimental study of spatial evolution of statistical parameters in a unidirectional narrow-banded random wavefield. Journal of Geophysical Research: Oceans, 114(C1): C01015

    Article  Google Scholar 

  • Slunyaev A, Didenkulova I, Pelinovsky E. 2011. Rogue waters. Contemporary Physics, 52(6): 571–590, doi: 10.1080/00107514.2011.613256

    Article  Google Scholar 

  • Soares C G, Cherneva Z, Antão E M. 2003. Characteristics of abnormal waves in North Sea storm sea states. Applied Ocean Research, 25(6): 337–344, doi: 10.1016/j.apor.2004.02.005

    Article  Google Scholar 

  • Tayfun M A, Fedele F. 2007. Wave-height distributions and nonlinear effects. Ocean Engineering, 34(11–12): 1631–1649, doi: 10.1016/j. oceaneng.2006.11.006

    Google Scholar 

  • Toffoli A, Bitner-Gregersen E, Onorato M, et al. 2008. Wave crest and trough distributions in a broad-banded directional wave field. Ocean Engineering, 35(17–18): 1784–1792, doi: 10.1016/j. oceaneng.2008.08.010

    Article  Google Scholar 

  • Toffoli A, Cavaleri L, Babanin A V, et al. 2011. Occurrence of extreme waves in three-dimensional mechanically generated wave fields propagating over an oblique current. Natural Hazards and Earth System Sciences, 11(3): 895–903, doi: 10.5194/nhess-11-895-2011

    Article  Google Scholar 

  • Toffoli A, Waseda T, Houtani H, et al. 2015. Rogue waves in opposing currents: an experimental study on deterministic and stochastic wave trains. Journal of Fluid Mechanics, 769: 277–297, doi: 10.1017/jfm.2015.132

    Article  Google Scholar 

  • Trulsen K, Zeng H, Gramstad O. 2012. Laboratory evidence of freak waves provoked by non-uniform bathymetry. Physics of Fluids, 24(9): 097101, doi: 10.1063/1.4748346

    Google Scholar 

  • Veltcheva A D, Soares C G. 2012. Analysis of abnormal wave groups in Hurricane Camille by the Hilbert Huang Transform method. Ocean Engineering, 42: 102–111, doi: 10.1016/j.oceaneng. 2011.12.013

    Article  Google Scholar 

  • Waseda T, Kinoshita T, Tamura H. 2009. Evolution of a random directional wave and freak wave occurrence. Journal of Physical Oceanography, 39(3): 621–639, doi: 10.1175/2008JPO4031.1

    Article  Google Scholar 

  • Zeng H, Trulsen K. 2012. Evolution of skewness and kurtosis of weakly nonlinear unidirectional waves over a sloping bottom. Natural Hazards and Earth System Sciences, 12(3): 631–638, doi: 10.5194/nhess-12-631-2012

    Article  Google Scholar 

  • Zhang Yunqiu, Zhang Ningchuan, Hu Jinpeng. 2007. Numerical simulation and mechanism analysis of freak waves. Acta Oceanologica Sinica, 26(5): 116–124

    Google Scholar 

Download references

Acknowledgements

We are grateful to China Ship Scientific Research Center for providing the data of the reef terrain in the West Pacific. Great thanks are also given to the team of State Key Laboratory of Coastal and Offshore Engineering in Dalian University of Technology who supported a lot for the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zou.

Additional information

Foundation item: The Qingdao National Laboratory for Marine Science and Technology under contract No. QNLM20160RP0402; the National Natural Science Foundation of China under contract Nos 51522902 and 51579040; the Fundamental Research Funds for the Central Universities under contract No. DUT17ZD233; the Ministry of Industry and Information Technology of China under contract No. [2016]22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, L., Wang, A., Wang, Z. et al. Experimental study of freak waves due to three-dimensional island terrain in random wave. Acta Oceanol. Sin. 38, 92–99 (2019). https://doi.org/10.1007/s13131-019-1390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-019-1390-x

Key words

Navigation