Skip to main content

Advertisement

Log in

Construction of a hepatocytes-related and protein kinase–related gene signature in HCC based on ScRNA-Seq analysis and machine learning algorithm

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

With recent advancements in single-cell sequencing and machine learning methods, new insights into hepatocellular carcinoma (HCC) progression have been provided. Protein kinase–related genes (PKRGs) affect cell growth, differentiation, apoptosis, and signaling during HCC progression, making the predictive relevance of PKRGs in HCC highly necessary for personalized medicine. In this study, we analyzed single-cell data of HCC and used the machine learning method of LASSO regression to construct PKRG prediction models in six major cell types. CDK4 and AURKB were found to be the best PKRG prognostic signature for predicting the overall survival of HCC patients (including TCGA, ICGC, and GEO datasets) in hepatocytes. Independent clinical factors were further screened out using the COX regression method, and a nomogram combining PKRGs and cancer status was created. Treatment with Palbociclib (CDK4 Inhibitor) and Barasertib (AURKB Inhibitor) inhibited HCC cell migration. Patients classified as PKRG high- or low-risk groups showed different tumor mutation burdens, immune infiltrations, and gene enrichment. The PKRG high-risk group showed higher tumor mutation burdens and gene set enrichment analysis indicated that cell cycle, base excision repair, and RNA degradation pathways were more enriched in these patients. Additionally, the PKRG high-risk group demonstrated higher infiltration levels of Naïve CD8+ T cells, Endothelial cells, M2 macrophage, and Tregs than the low-risk group. In summary, this study established the hepatocytes-related PKRG signature for prognostic stratification at the single-cell level by using machine learning algorithms in HCC and identified potential HCC treatment targets based on the PKRG signature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

GSE149614: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149614; TCGA-LIHC: https://portal.gdc.cancer.gov/projects/TCGA-LIHC; ICGC-LIRI-JP: https://dcc.icgc.org/projects/LIRI-JP; Protein kinase-related genes (PKRGs): GeneCards Database (https://www.genecards.org/).

Abbreviations

HCC :

hepatocellular carcinoma

PKRGs :

protein kinase–related genes

OS :

overall survival

RS :

risk score

DEGs :

differentially expressed genes

TMB :

tumor mutation burden

GSEA :

gene set enrichment analysis

References

  1. Abutorabi ES, Poursheikhani A, Kashani B et al (2023) The effects of Abemaciclib on cell cycle and apoptosis regulation in anaplastic thyroid cancer cells. Mol Biol Rep 50:4073–4082. https://doi.org/10.1007/s11033-023-08255-1

    Article  CAS  PubMed  Google Scholar 

  2. AlJanahi AA, Danielsen M, Dunbar CE (2018) An introduction to the analysis of single-cell RNA-sequencing data. Mol Ther Methods Clin Dev 10:189–196. https://doi.org/10.1016/j.omtm.2018.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aran D, Hu Z, Butte AJ (2017) XCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:220. https://doi.org/10.1186/s13059-017-1349-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bai X, Guo Z-Q, Zhang Y-P et al (2023) CDK4/6 inhibition triggers ICAM1-driven immune response and sensitizes LKB1 mutant lung cancer to immunotherapy. Nat Commun 14:1247. https://doi.org/10.1038/s41467-023-36892-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bertran-Alamillo J, Cattan V, Schoumacher M et al (2019) AURKB as a target in non-small cell lung cancer with acquired resistance to anti-EGFR therapy. Nat Commun 10:1812. https://doi.org/10.1038/s41467-019-09734-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown ZJ, Tsilimigras DI, Ruff SM et al (2023) Management of hepatocellular carcinoma: a review. JAMA Surg 158:410–420. https://doi.org/10.1001/jamasurg.2022.7989

    Article  PubMed  Google Scholar 

  7. Callegari E, Guerriero P, Bassi C et al (2022) miR-199a-3p increases the anti-tumor activity of palbociclib in liver cancer models. Mol Ther Nucleic Acids 29:538–549. https://doi.org/10.1016/j.omtn.2022.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen Y, Zhu Y, Dong Y et al (2023) A pyroptosis-related gene signature for prognosis prediction in hepatocellular carcinoma. Front Oncol 13:1085188. https://doi.org/10.3389/fonc.2023.1085188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Diaz RJ, Golbourn B, Shekarforoush M et al (2012) Aurora kinase B/C inhibition impairs malignant glioma growth in vivo. J Neurooncol 108:349–360. https://doi.org/10.1007/s11060-012-0835-2

    Article  CAS  PubMed  Google Scholar 

  10. Ding S, Chen X, Shen K (2020) Single-cell RNA sequencing in breast cancer: understanding tumor heterogeneity and paving roads to individualized therapy. Cancer Commun 40:329–344. https://doi.org/10.1002/cac2.12078

    Article  Google Scholar 

  11. Duah, E, Seligson, ND, Persaud, AK, et al (2023). CDK4/6 and autophagy inhibitors synergize to suppress the growth of human head and neck squamous cell carcinomas. Mol Carcinogen 1–2. https://doi.org/10.1002/mc.23556

  12. Feng T, Zhao J, Wei D et al (2021) Immunogenomic analyses of the prognostic predictive model for patients with renal cancer. Front Immunol 12:762120. https://doi.org/10.3389/fimmu.2021.762120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306. https://doi.org/10.1038/nrc3245

    Article  CAS  PubMed  Google Scholar 

  14. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Sci 313:1960–1964. https://doi.org/10.1126/science.1129139

    Article  CAS  Google Scholar 

  15. Giner F, Machado I, Rubio-Martínez LA et al (2023) Intimal sarcoma with MDM2/CDK4 amplification and p16 overexpression: a review of histological features in primary tumor and xenograft, with immunophenotype and molecular profiling. Int J Mol Sci 24:7535. https://doi.org/10.3390/ijms24087535

    Article  PubMed  PubMed Central  Google Scholar 

  16. He Y, Wu Y, Song M et al (2023) Establishment and validation of a ferroptosis-related prognostic signature for hepatocellular carcinoma. Front Oncol 13:1149370. https://doi.org/10.3389/fonc.2023.1149370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He Z, Chen Q, He W et al (2023) Hepatocellular carcinoma subtypes based on metabolic pathways reveals potential therapeutic targets. Front Oncol 13:1086604. https://doi.org/10.3389/fonc.2023.1086604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang A, Yang X-R, Chung W-Y et al (2020) Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther 5:146. https://doi.org/10.1038/s41392-020-00264-x

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kokudo T, Hasegawa K, Matsuyama Y et al (2016) Survival benefit of liver resection for hepatocellular carcinoma associated with portal vein invasion. J Hepatol 65:938–943. https://doi.org/10.1016/j.jhep.2016.05.044

    Article  PubMed  Google Scholar 

  20. Liberzon A, Subramanian A, Pinchback R et al (2011) Molecular signatures database (MSigDB) 3.0. Bioinform 27:1739–1740. https://doi.org/10.1093/bioinformatics/btr260

    Article  CAS  Google Scholar 

  21. Lin Z-Z, Jeng Y-M, Hu F-C et al (2010) Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B overexpression in HCC. BMC Cancer 10:461. https://doi.org/10.1186/1471-2407-10-461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Modi V, Dunbrack RL (2019) A structurally-validated multiple sequence alignment of 497 human protein kinase domains. Sci Rep 9:19790. https://doi.org/10.1038/s41598-019-56499-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mortoglou M, Miralles F, Mould RR et al (2023) Inhibiting CDK4/6 in pancreatic ductal adenocarcinoma via microRNA-21. Eur J Cell Biol 102:151318. https://doi.org/10.1016/j.ejcb.2023.151318

    Article  CAS  PubMed  Google Scholar 

  24. Osorio D, Cai JJ (2021) Systematic determination of the mitochondrial proportion in human and mice tissues for single-cell RNA-sequencing data quality control. Bioinform 37:963–967. https://doi.org/10.1093/bioinformatics/btaa751

    Article  CAS  Google Scholar 

  25. Protein kinase inhibitors (2012) LiverTox: clinical and research information on drug-induced liver injury. National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda (MD)

  26. Rieckmann JC, Geiger R, Hornburg D et al (2017) Social network architecture of human immune cells unveiled by quantitative proteomics. Nat Immunol 18:583–593. https://doi.org/10.1038/ni.3693

    Article  CAS  PubMed  Google Scholar 

  27. Robinson DR, Wu Y-M, Lin S-F (2000) The protein tyrosine kinase family of the human genome. Oncogene 19:5548–5557. https://doi.org/10.1038/sj.onc.1203957

    Article  CAS  PubMed  Google Scholar 

  28. Roessler S, Jia H-L, Budhu A et al (2010) A unique metastasis gene signature enables prediction of tumor relapse in early stage hepatocellular carcinoma patients. Cancer Res 70:10202–10212. https://doi.org/10.1158/0008-5472.CAN-10-2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roskoski R (2023) Properties of FDA-approved small molecule protein kinase inhibitors: a 2023 update. Pharmacol Res 187:106552. https://doi.org/10.1016/j.phrs.2022.106552

    Article  CAS  PubMed  Google Scholar 

  30. Roy T, Barrows E, Mainor C et al (2023) A phase I trial of palbociclib and bosutinib with fulvestrant in patients with metastatic hormone receptor positive and HER2 negative (HR+ HER2-) breast cancer refractory to an aromatase inhibitor and a CDK4/6 inhibitor. Contemp Clin Trials Commun 33:101110. https://doi.org/10.1016/j.conctc.2023.101110

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Sci 331:1565–1570. https://doi.org/10.1126/science.1203486

    Article  CAS  Google Scholar 

  32. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72:7–33. https://doi.org/10.3322/caac.21708

    Article  PubMed  Google Scholar 

  33. Singal AG, Kudo M, Bruix J (2023) Breakthroughs in hepatocellular carcinoma therapies. Clin Gastroenterol Hepatol 21(8):2135–2149. https://doi.org/10.1016/j.cgh.2023.01.039

    Article  PubMed  Google Scholar 

  34. Song M, Zhang N, Cao F, Liu J (2023) PKNOX2 suppresses lung cancer cell proliferation by inhibiting the PI3K/AKT/mTOR axis. Exp Ther Med 25:217. https://doi.org/10.3892/etm.2023.11917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sorrentino R, Libertini S, Pallante PL et al (2005) Aurora B overexpression associates with the thyroid carcinoma undifferentiated phenotype and is required for thyroid carcinoma cell proliferation. J Clin Endocrinol Metab 90:928–935. https://doi.org/10.1210/jc.2004-1518

    Article  CAS  PubMed  Google Scholar 

  36. Sun H-B, Han X-L, Zhong M, Yu D-J (2020) Linc00703 suppresses non-small cell lung cancer progression by modulating CyclinD1/CDK4 expression. Eur Rev Med Pharmacol Sci 24:6131–6138. https://doi.org/10.26355/eurrev_202006_21508

    Article  PubMed  Google Scholar 

  37. Tanaka S, Arii S (2010) Medical treatments: in association or alone, their role and their future perspectives: novel molecular-targeted therapy for hepatocellular carcinoma. J Hepatobiliary Pancreat Sci 17:413–419. https://doi.org/10.1007/s00534-009-0238-8

    Article  PubMed  Google Scholar 

  38. Wan B, Huang Y, Liu B et al (2019) AURKB: a promising biomarker in clear cell renal cell carcinoma. PeerJ 7:e7718. https://doi.org/10.7717/peerj.7718

    Article  PubMed  PubMed Central  Google Scholar 

  39. Welch DR, Hurst DR (2019) Defining the hallmarks of metastasis. Cancer Res 79:3011–3027. https://doi.org/10.1158/0008-5472.CAN-19-0458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiao J, Zhang Y (2021) AURKB as a promising prognostic biomarker in hepatocellular carcinoma. Evol Bioinform Online 17:11769343211057588. https://doi.org/10.1177/11769343211057589

    Article  Google Scholar 

  41. Zhang X, Yang Z, Su S et al (2023) Kaempferol ameliorates pulmonary vascular remodeling in chronic hypoxia-induced pulmonary hypertension rats via regulating Akt-GSK3β-cyclin axis. Toxicol Appl Pharmacol 466:116478. https://doi.org/10.1016/j.taap.2023.116478

    Article  CAS  PubMed  Google Scholar 

  42. Zhao H, Wang Y, Yang Z et al (2022) High expression of aurora kinase B predicts poor prognosis in hepatocellular carcinoma after curative surgery and its effects on the tumor microenvironment. Ann Transl Med 10:1168. https://doi.org/10.21037/atm-22-4798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu Q, Ding L, Zi Z et al (2019) Viral-mediated AURKB cleavage promotes cell segregation and tumorigenesis. Cell Rep 26:3657–3671.e5. https://doi.org/10.1016/j.celrep.2019.02.106

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Z.P. and X.Z. designed the study and revised the manuscript. Z.Z. and L.M. performed the analysis and wrote the manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Zuhui Pu or Xiaoduan Zhuang.

Ethics declarations

Ethics approval

The studies were approved by the institutional research ethics committee of Shenzhen Second People’s Hospital (No. 20170822007).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. For the first time, we constructed a protein kinase–related genes (PKRG) prediction model for hepatocellular carcinoma patients by single-cell RNA-sequencing and the machine learning algorithm.

2. The PKRG signature and competing-risk nomogram established in this study demonstrate high predictability and accuracy, offering valuable tools for clinical decision-making.

3. With the ability to precisely predict the prognosis of HCC, our PKRG model has the potential to guide clinical predictions, preventions, and personalized medicine strategies for HCC patients.

Supplementary information

ESM 1

(DOCX 863 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Mou, L., Pu, Z. et al. Construction of a hepatocytes-related and protein kinase–related gene signature in HCC based on ScRNA-Seq analysis and machine learning algorithm. J Physiol Biochem 79, 771–785 (2023). https://doi.org/10.1007/s13105-023-00973-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-023-00973-1

Keywords

Navigation