Skip to main content

Advertisement

Log in

The role of lamin A/C in mesenchymal stem cell differentiation

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Lamin A/C is the major architectural protein of cell nucleus in charge of the nuclear mechanosensing. By integrating extracellular mechanical and biochemical signals, lamin A/C regulates multiple intracellular events including mesenchymal stem cell (MSC) fate determination. Herein, we review the recent findings about the effects and mechanisms of lamin A/C in governing MSC lineage commitment, with a special focus on osteogenesis and adipogenesis. Better understanding of MSC differentiation regulated by lamin A/C could provide insights into pathogenesis of age-related osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

HGPS:

Hutchinson-Gilford progeria syndrome

KASH:

Klarsicht/ANC-1/Syne homology

LINC:

Linkers of nucleoskeleton and cytoskeleton

MKL1:

Megakaryoblastic leukemia 1

MSC:

Mesenchymal stem cell

RA:

Retinoic acid

RAR:

Retinoic acid receptors

RARE:

RA-responsive elements

SRF:

Serum response factor

SUN:

Sad1/UNC-84

YAP:

Yes-associated protein

TAZ:

transcriptional co-activators with PDZ-binding motif

References

  1. Akter R, Rivas D, Geneau G, Drissi H, Duque G (2009) Effect of lamin A/C knockdown on osteoblast differentiation and function. J Bone Miner Res 24:283–293. https://doi.org/10.1359/jbmr.081010

    Article  CAS  PubMed  Google Scholar 

  2. Bengtsson L (2007) What MAN1 does to the Smads. TGFbeta/BMP signaling and the nuclear envelope. FEBS J 274:1374–1382

    Article  CAS  PubMed  Google Scholar 

  3. Bergo MO, Gavino B, Ross J, Schmidt WK, Hong C, Kendall LV, Mohr A, Meta M, Genant H, Jiang Y, Wisner ER, Van Bruggen N, Carano RA, Michaelis S, Griffey SM, Young SG (2002) Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc Natl Acad Sci U S A 99:13049–13054. https://doi.org/10.1073/pnas.192460799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bermeo S, Vidal C, Zhou H, Duque G (2015) Lamin A/C acts as an essential factor in mesenchymal stem cell differentiation through the regulation of the dynamics of the Wnt/beta-catenin pathway. J Cell Biochem 116:2344–2353. https://doi.org/10.1002/jcb.25185

    Article  CAS  PubMed  Google Scholar 

  5. Bertrand AT, Ziaei S, Ehret C, Duchemin H, Mamchaoui K, Bigot A, Mayer M, Quijano-Roy S, Desguerre I, Laine J, Ben Yaou R, Bonne G, Coirault C (2014) Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J Cell Sci 127:2873–2884. https://doi.org/10.1242/jcs.144907

    Article  CAS  PubMed  Google Scholar 

  6. Bianchi A, Manti PG, Lucini F, Lanzuolo C (2018) Mechanotransduction, nuclear architecture and epigenetics in Emery Dreifuss muscular dystrophy: tous pour un, un pour Tous. Nucleus 9:276–290. https://doi.org/10.1080/19491034.2018.1460044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bickmore WA, van Steensel B (2013) Genome architecture: domain organization of interphase chromosomes. Cell 152:1270–1284. https://doi.org/10.1016/j.cell.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  8. Boguslavsky RL, Stewart CL, Worman HJ (2006) Nuclear lamin A inhibits adipocyte differentiation: implications for Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 15:653–663. https://doi.org/10.1093/hmg/ddi480

    Article  CAS  PubMed  Google Scholar 

  9. Buxboim A, Swift J, Irianto J, Spinler KR, Dingal PC, Athirasala A, Kao YR, Cho S, Harada T, Shin JW, Discher DE (2014) Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin. Curr Biol 24:1909–1917. https://doi.org/10.1016/j.cub.2014.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chambliss AB, Khatau SB, Erdenberger N, Robinson DK, Hodzic D, Longmore GD, Wirtz D (2013) The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction. Sci Rep 3:1087. https://doi.org/10.1038/srep01087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, Lindsay R (2014) Clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int 25:2359–2381. https://doi.org/10.1007/s00198-014-2794-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172:41–53. https://doi.org/10.1083/jcb.200509124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dahl KN, Kalinowski A (2011) Nucleoskeleton mechanics at a glance. J Cell Sci 124:675–678. https://doi.org/10.1242/jcs.069096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dittmer TA, Misteli T (2011) The lamin protein family. Genome Biol 12:222. https://doi.org/10.1186/gb-2011-12-5-222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183. https://doi.org/10.1038/nature10137

    Article  CAS  PubMed  Google Scholar 

  16. Duque G, Rivas D (2006) Age-related changes in lamin A/C expression in the osteoarticular system: laminopathies as a potential new aging mechanism. Mech Ageing Dev 127:378–383. https://doi.org/10.1016/j.mad.2005.12.007

    Article  CAS  PubMed  Google Scholar 

  17. Duque G, Vidal C, Rivas D (2011) Protein isoprenylation regulates osteogenic differentiation of mesenchymal stem cells: effect of alendronate, and farnesyl and geranylgeranyl transferase inhibitors. Br J Pharmacol 162:1109–1118. https://doi.org/10.1111/j.1476-5381.2010.01111.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Galarza Torre A, Shaw JE, Wood A, Gilbert HTJ, Dobre O, Genever P, Brennan K, Richardson SM, Swift J (2018) An immortalised mesenchymal stem cell line maintains mechano-responsive behaviour and can be used as a reporter of substrate stiffness. Sci Rep 8:8981. https://doi.org/10.1038/s41598-018-27346-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006) Playing with bone and fat. J Cell Biochem 98:251–266. https://doi.org/10.1002/jcb.20777

    Article  CAS  PubMed  Google Scholar 

  20. Goldberg MW, Huttenlauch I, Hutchison CJ, Stick R (2008) Filaments made from A- and B-type lamins differ in structure and organization. J Cell Sci 121:215–225. https://doi.org/10.1242/jcs.022020

    Article  CAS  PubMed  Google Scholar 

  21. Green AC, Kocovski P, Jovic T, Walia MK, Chandraratna RAS, Martin TJ, Baker EK, Purton LE (2017) Retinoic acid receptor signalling directly regulates osteoblast and adipocyte differentiation from mesenchymal progenitor cells. Exp Cell Res 350:284–297. https://doi.org/10.1016/j.yexcr.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  22. Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wessels L, de Laat W, van Steensel B (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951. https://doi.org/10.1038/nature06947

    Article  CAS  PubMed  Google Scholar 

  23. Heo SJ, Driscoll TP, Thorpe SD (2016) Differentiation alters stem cell nuclear architecture, mechanics, and mechano-sensitivity. Elife 5. https://doi.org/10.7554/eLife.18207

  24. Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J (2013) Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature 497:507–511. https://doi.org/10.1038/nature12105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hutchison CJ, Worman HJ (2004) A-type lamins: guardians of the soma? Nat Cell Biol 6:1062–1067. https://doi.org/10.1038/ncb1104-1062

    Article  CAS  PubMed  Google Scholar 

  26. Ihalainen TO, Aires L, Herzog FA, Schwartlander R, Moeller J, Vogel V (2015) Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nat Mater 14:1252–1261. https://doi.org/10.1038/nmat4389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Isobe K, Gohara R, Ueda T, Takasaki Y, Ando S (2007) The last twenty residues in the head domain of mouse lamin A contain important structural elements for formation of head-to-tail polymers in vitro. Biosci Biotechnol Biochem 71:1252–1259. https://doi.org/10.1271/bbb.60674

    Article  CAS  PubMed  Google Scholar 

  28. Ivanovska IL, Swift J, Spinler K, Dingal D, Cho S, Discher DE (2017) Cross-linked matrix rigidity and soluble retinoids synergize in nuclear lamina regulation of stem cell differentiation. Mol Biol Cell 28:2010–2022. https://doi.org/10.1091/mbc.E17-01-0010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim DH, Khatau SB, Feng Y, Walcott S, Sun SX, Longmore GD, Wirtz D (2012) Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Sci Rep 2:555. https://doi.org/10.1038/srep00555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim DH, Wirtz D (2015) Cytoskeletal tension induces the polarized architecture of the nucleus. Biomaterials 48:161–172. https://doi.org/10.1016/j.biomaterials.2015.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kulangara K, Yang J, Chellappan M, Yang Y, Leong KW (2014) Nanotopography alters nuclear protein expression, proliferation and differentiation of human mesenchymal stem/stromal cells. PLoS One 9:e114698. https://doi.org/10.1371/journal.pone.0114698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee B, Lee TH, Shim J (2017) Emerin suppresses notch signaling by restricting the notch intracellular domain to the nuclear membrane. Biochim Biophys Acta Mol Cell Res 1864:303–313. https://doi.org/10.1016/j.bbamcr.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Wang J, Zou Y, Zhang Y, Long D, Lei L, Tan L, Ye R, Wang X, Zhao Z (2012) The influence of delayed compressive stress on TGF-beta1-induced chondrogenic differentiation of rat BMSCs through Smad-dependent and Smad-independent pathways. Biomaterials 33:8395–8405. https://doi.org/10.1016/j.biomaterials.2012.08.019

    Article  CAS  PubMed  Google Scholar 

  34. Li R, Liang L, Dou Y, Huang Z, Mo H, Wang Y, Yu B (2015) Mechanical strain regulates osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells. Biomed Res Int 2015:873251. doi:https://doi.org/10.1155/2015/873251, 1, 10

  35. Li W, Yeo LS, Vidal C, McCorquodale T, Herrmann M, Fatkin D, Duque G (2011) Decreased bone formation and osteopenia in lamin a/c-deficient mice. PLoS One 6:e19313. https://doi.org/10.1371/journal.pone.0019313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lombardi ML, Lammerding J (2011) Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function. Biochem Soc Trans 39:1729–1734. https://doi.org/10.1042/bst20110686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A 94:849–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maraldi NM, Capanni C, Cenni V, Fini M, Lattanzi G (2011) Laminopathies and lamin-associated signaling pathways. J Cell Biochem 112:979–992. https://doi.org/10.1002/jcb.22992

    Article  CAS  PubMed  Google Scholar 

  39. Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC, Perry MB, Brewer CC, Zalewski C, Kim HJ, Solomon B, Brooks BP, Gerber LH, Turner ML, Domingo DL, Hart TC, Graf J, Reynolds JC, Gropman A, Yanovski JA, Gerhard-Herman M, Collins FS, Nabel EG, Cannon RO 3rd, Gahl WA, Introne WJ (2008) Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med 358:592–604. https://doi.org/10.1056/NEJMoa0706898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miralles F, Posern G, Zaromytidou AI, Treisman R (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113:329–342

    Article  CAS  PubMed  Google Scholar 

  41. Mouilleron S, Guettler S, Langer CA, Treisman R, McDonald NQ (2008) Molecular basis for G-actin binding to RPEL motifs from the serum response factor coactivator MAL. EMBO J 27:3198–3208. https://doi.org/10.1038/emboj.2008.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mounkes LC, Kozlov S, Hernandez L, Sullivan T, Stewart CL (2003) A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423:298–301. https://doi.org/10.1038/nature01631

    Article  CAS  PubMed  Google Scholar 

  43. Nobusue H, Onishi N, Shimizu T, Sugihara E, Oki Y, Sumikawa Y, Chiyoda T, Akashi K, Saya H, Kano K (2014) Regulation of MKL1 via actin cytoskeleton dynamics drives adipocyte differentiation. Nat Commun 5:3368. https://doi.org/10.1038/ncomms4368

    Article  CAS  PubMed  Google Scholar 

  44. Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11:353–365. https://doi.org/10.1038/nrm2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Osmanagic-Myers S, Dechat T, Foisner R (2015) Lamins at the crossroads of mechanosignaling. Genes Dev 29:225–237. https://doi.org/10.1101/gad.255968.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pan D, Estevez-Salmeron LD, Stroschein SL, Zhu X, He J, Zhou S, Luo K (2005) The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem 280:15992–16001. https://doi.org/10.1074/jbc.M411234200

    Article  CAS  PubMed  Google Scholar 

  47. Parmacek MS (2007) Myocardin-related transcription factors: critical coactivators regulating cardiovascular development and adaptation. Circ Res 100:633–644. https://doi.org/10.1161/01.RES.0000259563.61091.e8

    Article  CAS  PubMed  Google Scholar 

  48. Pekovic V, Hutchison CJ (2008) Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J Anat 213:5–25. https://doi.org/10.1111/j.1469-7580.2008.00928.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Perepelina K, Dmitrieva R, Ignatieva E, Borodkina A, Kostareva A, Malashicheva A (2018) Lamin A/C mutation associated with lipodystrophy influences adipogenic differentiation of stem cells through interaction with notch signaling. Biochem Cell Biol 96:342–348. https://doi.org/10.1139/bcb-2017-0210

    Article  CAS  PubMed  Google Scholar 

  50. Philip JT, Dahl KN (2008) Nuclear mechanotransduction: response of the lamina to extracellular stress with implications in aging. J Biomech 41:3164–3170. https://doi.org/10.1016/j.jbiomech.2008.08.024

    Article  PubMed  Google Scholar 

  51. Rauner M, Sipos W, Goettsch C, Wutzl A, Foisner R, Pietschmann P, Hofbauer LC (2009) Inhibition of lamin A/C attenuates osteoblast differentiation and enhances RANKL-dependent osteoclastogenesis. J Bone Miner Res 24:78–86. https://doi.org/10.1359/jbmr.080902

    Article  CAS  PubMed  Google Scholar 

  52. Rivas D, Akter R, Duque G (2007) Inhibition of protein Farnesylation arrests adipogenesis and affects PPARgamma expression and activation in differentiating mesenchymal stem cells. PPAR Res 2007:81654–81657. https://doi.org/10.1155/2007/81654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rivas D, Li W, Akter R, Henderson JE, Duque G (2009) Accelerated features of age-related bone loss in zmpste24 metalloproteinase-deficient mice. J Gerontol A Biol Sci Med Sci 64:1015–1024. https://doi.org/10.1093/gerona/glp089

    Article  CAS  PubMed  Google Scholar 

  54. Rosenwald M, Efthymiou V, Opitz L, Wolfrum C (2017) SRF and MKL1 independently inhibit Brown adipogenesis. PLoS One 12:e0170643. https://doi.org/10.1371/journal.pone.0170643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Scaffidi P, Misteli T (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10:452–459. https://doi.org/10.1038/ncb1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmidt E, Nilsson O, Koskela A, Tuukkanen J, Ohlsson C, Rozell B, Eriksson M (2012) Expression of the Hutchinson-Gilford progeria mutation during osteoblast development results in loss of osteocytes, irregular mineralization, and poor biomechanical properties. J Biol Chem 287:33512–33522. https://doi.org/10.1074/jbc.M112.366450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Song F, Jiang D, Wang T, Wang Y, Lou Y, Zhang Y, Ma H, Kang Y (2017) Mechanical stress regulates osteogenesis and adipogenesis of rat mesenchymal stem cells through PI3K/Akt/GSK-3beta/beta-catenin signaling pathway. Biomed Res Int 2017:6027402. doi:https://doi.org/10.1155/2017/6027402, 1, 10

  58. Stroud MJ (2018) Linker of nucleoskeleton and cytoskeleton complex proteins in cardiomyopathy. Biophys Rev 10:1033–1051. https://doi.org/10.1007/s12551-018-0431-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stroud MJ, Banerjee I, Veevers J, Chen J (2014) Linker of nucleoskeleton and cytoskeleton complex proteins in cardiac structure, function, and disease. Circ Res 114:538–548. https://doi.org/10.1161/circresaha.114.301236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104. https://doi.org/10.1126/science.1240104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Talwar S, Jain N, Shivashankar GV (2014) The regulation of gene expression during onset of differentiation by nuclear mechanical heterogeneity. Biomaterials 35:2411–2419. https://doi.org/10.1016/j.biomaterials.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  62. Vartiainen MK, Guettler S, Larijani B, Treisman R (2007) Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316:1749–1752. https://doi.org/10.1126/science.1141084

    Article  CAS  PubMed  Google Scholar 

  63. Vidal C, Bermeo S, Fatkin D, Duque G (2012) Role of the nuclear envelope in the pathogenesis of age-related bone loss and osteoporosis. BoneKEy reports 1:62. https://doi.org/10.1038/bonekey.2012.62

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wang Y, Tao Y, Hyman ME, Li J, Chen Y (2009) Osteoporosis in China. Osteoporos Int 20:1651–1662. https://doi.org/10.1007/s00198-009-0925-y

    Article  CAS  PubMed  Google Scholar 

  65. Wen JH, Vincent LG, Fuhrmann A, Choi YS, Hribar KC, Taylor-Weiner H, Chen S, Engler AJ (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 13:979–987. https://doi.org/10.1038/nmat4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Werner M, Blanquer SB, Haimi SP, Korus G, Dunlop JW, Duda GN, Grijpma DW, Petersen A (2017) Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nuclear deformation. Adv Sci (Weinh) 4:1600347. https://doi.org/10.1002/advs.201600347

    Article  CAS  Google Scholar 

  67. Xie J, Zhang D, Zhou C, Yuan Q, Ye L, Zhou X (2018) Substrate elasticity regulates adipose-derived stromal cell differentiation towards osteogenesis and adipogenesis through beta-catenin transduction. Acta Biomater 79:83–95. https://doi.org/10.1016/j.actbio.2018.08.018

    Article  CAS  PubMed  Google Scholar 

  68. Yang SH, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, Majumdar S, Bergo MO, Young SG, Fong LG (2006) A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest 116:2115–2121. https://doi.org/10.1172/jci28968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ye R, Hao J, Song J, Zhao Z, Fang S, Wang Y, Li J (2014) Microenvironment is involved in cellular response to hydrostatic pressures during chondrogenesis of mesenchymal stem cells. J Cell Biochem 115:1089–1096. https://doi.org/10.1002/jcb.24743

    Article  CAS  PubMed  Google Scholar 

  70. Zastrow MS, Vlcek S, Wilson KL (2004) Proteins that bind A-type lamins: integrating isolated clues. J Cell Sci 117:979–987. https://doi.org/10.1242/jcs.01102

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (31470904, Zhihe Zhao; 81400522, Rui Ye).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihe Zhao or Rui Ye.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Yang, Y., Keyimu, R. et al. The role of lamin A/C in mesenchymal stem cell differentiation. J Physiol Biochem 75, 11–18 (2019). https://doi.org/10.1007/s13105-019-00661-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-019-00661-z

Keywords

Navigation