Skip to main content
Log in

Oxidative stress-dependent contribution of HMGB1 to the interplay between apoptosis and autophagy in diabetic rat liver

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The progression of oxidative stress, resulting cell damage, and cell death underlies the etiology of liver damage/dysfunction as a complication of diabetes. High-mobility group box 1 (HMGB1) protein, a chromatin-binding nuclear protein and damage-associated molecular pattern molecule, is integral to oxidative stress and signaling pathways regulating cell death and cell survival. We previously found that in streptozotocin (STZ)-induced diabetic rats, reduction of oxidative stress after melatonin administration lowered necrotic cell death and increased expression of HMGB1 and hepatocellular damage. In the present study, we examined whether alleviation of diabetes-attendant oxidative stress and ensuing change in HMGB1 expression influence the dynamic equilibrium between apoptosis/autophagy and liver damage. We observed that elevated HMGB1 protein levels in diabetic rat liver accompanied increased interactions of HMGB1 with TLR4 and RAGE, and activation of the intrinsic apoptotic pathway and Beclin 1-dependent autophagy. The absence of p62 degradation in diabetic rat liver pointed to defective autophagy which was responsible for lower autophagosome/autophagolysosome formation and an increased apoptosis/autophagy ratio. Compared to diabetic rats, in melatonin-treated diabetic rats, the structure of liver cells was preserved, HMGB1/TLR4 interaction and downstream apoptotic signaling were significantly reduced, HMGB1/Beclin 1 colocalization and interactions were augmented and Beclin 1-mediated autophagy, mithophagy in particular, were increased. We concluded that in mild oxidative stress, HMGB1 is cytoprotective, whereas in intense oxidative stress, HMGB1 actions promote cell death and liver damage. Since reduced HMGB1 binds to RAGE but not to TLR4, redox modification of HMGB1 as a mechanism regulating the cross-talk between apoptosis and autophagy in diabetes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aloya R, Shirvan A, Grimberg H, Reshef A, Levin G, Kidron D, Cohen A, Ziv I (2006) Molecular imaging of cell death in vivo by a novel small molecule probe. Apoptosis 11:2089–2101

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arambašić J, Mihailović M, Bogojević D, Ivanović-Matić S, Uskoković A, Poznanović G, Grigorov I (2013) Haptoglobin and the inflammatory and oxidative status in experimental diabetic rats: antioxidant role of haptoglobin. J Physiol Biochem 69:45–58

    Article  Google Scholar 

  3. Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T (2009) Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 452:181–197

    Article  PubMed  Google Scholar 

  4. Brenner C, Galluzzi L, Kepp O, Kroemer G (2013) Decoding cell death signals in liver inflammation. J Hepatol 59:583–594

    Article  CAS  PubMed  Google Scholar 

  5. Chatila R, West AB (1996) Hepatomegaly and abnormal liver tests due to glycogenosis in adults with diabetes. Medicine 75:327–333

    Article  CAS  PubMed  Google Scholar 

  6. Ding HS, Yang J, Chen P, Yang J, Bo SQ, Ding JW, Yu QQ (2013) The HMGB1-TLR4 axis contributes to myocardial ischemia/reperfusion injury via regulation of cardiomyocyte apoptosis. Gene 527:389–393

    Article  CAS  PubMed  Google Scholar 

  7. Eşrefoğlu M, Gul M, Ateş B, Selimoğlu MA (2006) Ultrastructural clues for the protective effect of melatonin against oxidative damage in cerulein-induced pancreatitis. J Pineal Res 40:92–97

    Article  PubMed  Google Scholar 

  8. Grigorov I, Bogojević D, Jovanović S, Petrović A, Ivanović-Matić S, Zolotarevski L, Poznanović G, Martinović V (2014) Hepatoprotective effects of melatonin against pronecrotic cellular events in streptozotocin-induced diabetic rats. J Physiol Biochem 70:441–450

    Article  CAS  PubMed  Google Scholar 

  9. González-Rodríguez A, Mayoral R, Agra N, Valdecantos MP, Pardo V, Miquilena-Colina ME, Vargas-Castrillón J, Lo Iacono O, Corazzari M, Fimia GM, Piacentini M, Muntané J, Boscá L, García-Monzón C, Martín-Sanz P, Valverde ÁM (2014) Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis 5:e1179

    Article  PubMed  PubMed Central  Google Scholar 

  10. Guo Y, Wang J, Wang Z, Yang Y, Wang X, Duan Q (2010) Melatonin protects N2a against ischemia/reperfusion injury through autophagy enhancement. J Huazhong Univ Sci Technol Med Sci 30:1–7

    Article  CAS  PubMed  Google Scholar 

  11. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  12. Janko C, Filipović M, Munoz LE, Schorn C, Schett G, Ivanović-Burmazović I, Herrmann M (2014) Redox modulation of HMGB1-related signaling. Antioxid Redox Signal 20:1075–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang R, Livesey KM, Zeh HJ, Loze MT, Tang D (2010) HMGB1: a novel Beclin 1-binding protein active in autophagy. Autophagy 6:1209–1211

    Article  CAS  PubMed  Google Scholar 

  14. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Komatsu M, Ichimura Y (2010) Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 584:1374–1378

    Article  CAS  PubMed  Google Scholar 

  17. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Livesey KM, Kang R, Vernon P, Buchser W, Loughran P, Watkins SC, Zhang L, Manfredi JJ, Zeh HJ 3rd, Li L, Lotze MT, Tang D (2012) p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res 72:1996–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342

    Article  CAS  PubMed  Google Scholar 

  21. Luedde T, Kaplowitz N, Schwabe RF (2014) Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147:765–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94

    Article  PubMed  PubMed Central  Google Scholar 

  23. Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J (2012) The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J 12:5–18

    Article  PubMed  PubMed Central  Google Scholar 

  24. Müller S, Scaffidi P, Degryse B, Bonaldi T, Ronfani L, Agresti A, Beltrame M, Bianchi ME (2001) New EMBO member’s review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J 20:4337–4340

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biohys Acta 1833:3448–3459

    Article  CAS  Google Scholar 

  26. Nowotny K, Jung T, Höhn A, Weber D, Grune T (2015) Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 5:194–222

  27. Oltvai Z, Milliman C, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conversed homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  CAS  PubMed  Google Scholar 

  28. Radogna F, Diederich M, Ghibelli L (2010) Melatonin: a pleiotropic molecule regulating inflammation. Biochem Pharmacol 80:1844–1852

    Article  CAS  PubMed  Google Scholar 

  29. Singhal NK, Srivastava G, Patel DK, Jain SK, Singh MP (2011) Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson′s disease phenotype in the mouse. J Pineal Res 50:97–109

    CAS  PubMed  Google Scholar 

  30. Steer SA, Scarim AL, Chambers KT, Corbett JA (2006) Interleukin-1 stimulates β-cell necrosis and release of the immunological adjuvant HMGB1. PLoS Med 3:e17

    Article  PubMed  Google Scholar 

  31. Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE, Benschop R, Sparvero LJ, Amoscato AA, Tracey KJ, Zeh HJ, Lotze MT (2010) HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 29:5299–5310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ 3rd, Lotze MT (2010) Endogenous HMGB1 regulates autophagy. J Cell Biol 190:881–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tang D, Kang R, Livesey KM, Zeh HJ, Lotze MT (2011) High mobility group box 1 (HMGB1) activates an autophagic response to oxidative stress. Antioxid Redox Signal 15:2185–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang D, Loze MT, Zeh HJ, Kang R (2010) The redox protein HMGB1 regulates cell death and survival in cancer treatment. Autophagy 6:1181–1183

    Article  CAS  PubMed  Google Scholar 

  35. Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y, Yoshioka K, Masuyama N, Gotoh Y (2004) JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J 2:1889–1899

    Article  Google Scholar 

  36. Urbonaviciute V, Meister S, Fürnrohr BG, Frey B, Gückel E, Schett G, Herrmann M, Voll RE (2009) Oxidation of the alarmin high-mobility group box 1 protein (HMGB1) during apoptosis. Autoimmunity 42:305–307

    Article  CAS  PubMed  Google Scholar 

  37. Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R, Verspurten J, Declercq W, Agostinis P, Vanden Berghe T, Lippens S, Vandenabeele P (2010) Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis 1:e18–

  38. Yang H, Antoine DJ, Andersson U, Tracey KJ (2013) The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol 93:865–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang H, Wang H, Chavan SS, Andersson U (2015) High mobility group box protein 1 (HMGB1): the prototypical endogenous danger molecule. Mol Med 21(Suppl 1):S6–S12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang S, Zhong J, Yang P, Gong F, Wang C-Y (2009) HMGB1, an innate alarmin, in the pathogenesis of type 1 diabetes. Int J Clin Exp Pathol 3:24–38

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant No. 173020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilijana Grigorov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, A., Bogojević, D., Korać, A. et al. Oxidative stress-dependent contribution of HMGB1 to the interplay between apoptosis and autophagy in diabetic rat liver. J Physiol Biochem 73, 511–521 (2017). https://doi.org/10.1007/s13105-017-0574-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-017-0574-0

Keywords

Navigation