Skip to main content
Log in

Sodium butyrate protects against oxidative stress in HepG2 cells through modulating Nrf2 pathway and mitochondrial function

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 05 October 2017

This article has been updated

Abstract

Sodium butyrate (NaBu) is a by-product of microbial fermentation of dietary fiber in the gastrointestinal tract and has been shown to increase the activity of antioxidant enzymes, such as catalase or heme oxidase-1, in vivo. However, the mechanism of this effect is still unclear. This study investigated the antioxidant effect of NaBu on HepG2 cells under H2O2-induced oxidative stress. NaBu (0.3 mM) attenuated cell death and accumulation of reactive oxygen species and improved multiple antioxidant parameters in H2O2-injured HepG2 cells. NaBu inhibited glycogen synthase kinase-3 beta (GSK-3β) by increasing the p-GSK-3β (Ser9) level and promoted nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), which increased the expression of downstream antioxidant enzymes. Together with promotion of peroxisome proliferator-activated receptor gamma coactivator 1-alpha and mitochondrial DNA copy number, NaBu modulated energy metabolism and mitochondrial function, decreasing glycolysis, increasing β-oxidation, and enhancing the tricarboxylic acid cycle and oxidative phosphorylation. NaBu increased mitochondrial manganese-superoxide dismutase and glutathione peroxidase activity. In conclusion, NaBu protected HepG2 cells against oxidative stress by modulating Nrf2 pathway activity and mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 05 October 2017

    Volume 73 issue 3 was published with an incorrect cover date. Correct is August 2017. The Publisher apologizes for this mistake and all related inconveniences caused by this.

References

  1. Amoêdo ND, Rodrigues MF, Pezzuto P, Galina A, da Costa RM, Lacerda de Almeida FC, El-Bacha T, Rumjanek FD (2011) Energy metabolism in H460 lung cancer cells: effects of histone deacetylase inhibitors. PLoS One 6. doi:10.1371/journal.pone.0022264

  2. Bai Z, Zhang Z, Ye Y, Wang S (2010) Sodium butyrate induces differentiation of gastric cancer cells to intestinal cells via the PTEN/phosphoinositide 3-kinase pathway. Cell Biol Int 34:1141–1145. doi:10.1042/CBI20090481

    Article  CAS  PubMed  Google Scholar 

  3. Charest-Marcotte A, Dufour CR, Wilson BJ, Tremblay AM, Eichner LJ, Arlow DH, Mootha VK, Giguere V (2010) The homeobox protein Prox1 is a negative modulator of ERR alpha/PGC-1 alpha bioenergetic functions. Genes Dev 24:537–542. doi:10.1101/gad.1871610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen K, Yan B, Wang F, Wen F, Xing X, Tang X, Shi Y, Le G (2016) Type 1 5′-deiodinase activity is inhibited by oxidative stress and restored by alpha-lipoic acid in HepG2 cells. Biochem Biophys Res Commun 472:496–501. doi:10.1016/j.bbrc.2016.02.119

    Article  CAS  PubMed  Google Scholar 

  5. Dikalov S (2011) Cross talk between mitochondria and NADPH oxidases. Free Radic Biol Med 51:1289–1301. doi:10.1016/j.freeradbiomed.2011.06.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526. doi:10.1016/j.cmet.2011.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Endo H, Niioka M, Kobayashi N, Tanaka M, Watanabe T (2013) Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis. PLoS One 8:e63388. doi:10.1371/journal.pone.0063388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fung KYC, Cosgrove L, Lockett T, Head R, Topping DL (2012) A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr 108:820–831. doi:10.1017/s0007114512001948

    Article  CAS  PubMed  Google Scholar 

  9. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517. doi:10.2337/db08-1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Henagan TM, Stefanska B, Fang Z, Navard AM, Ye J, Lenard NR, Devarshi PP (2015) Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning. Br J Pharmacol 172:2782–2798. doi:10.1111/bph.13058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Herold C, Ganslmayer M, Ocker M, Hermann M, Geerts A, Hahn EG, Schuppan D (2002) The histone-deacetylase inhibitor trichostatin A blocks proliferation and triggers apoptotic programs in hepatoma cells. J Hepatol 36:233–240. doi:10.1016/s0168-8278(01)00257-4

    Article  CAS  PubMed  Google Scholar 

  12. Hung YP, Albeck JG, Tantama M, Yellen G (2011) Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab 14:545–554. doi:10.1016/j.cmet.2011.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jaeschke H (2011) Reactive oxygen and mechanisms of inflammatory liver injury: present concepts. J Gastroenterol Hepatol 26:173–179. doi:10.1111/j.1440-1746.2010.06592.x

    Article  CAS  PubMed  Google Scholar 

  14. Wang HG, Huang XD, Shen P, Li LR, Xue HT, Ji GZ (2013) Anticancer effects of sodium butyrate on hepatocellular carcinoma cells in vitro. Int J Mol Med. doi:10.3892/ijmm.2013.1285

  15. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I (2015) Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7:2839–2849. doi:10.3390/nu7042839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li ZL, Mo L, Le G, Shi Y (2014) Oxidized casein impairs antioxidant defense system and induces hepatic and renal injury in mice. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 64:86–93. doi:10.1016/j.fct.2013.10.039

    Article  CAS  Google Scholar 

  17. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370. doi:10.1016/j.cmet.2005.05.004

    Article  PubMed  Google Scholar 

  18. Malik AN, Czajka A (2013) Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 13:481–492. doi:10.1016/j.mito.2012.10.011

    Article  CAS  PubMed  Google Scholar 

  19. Martín SA, Ceballo S, Ruminot I, Lerchundi R, Frommer WB, Barros LF (2013) A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLoS One 8:e57712. doi:10.1371/journal.pone.0057712

    Article  Google Scholar 

  20. Martinez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, Santos JH, Woychik R, Dufour E, Spelbrink JN, Weinberg SE, Zhao Y, DeBerardinis RJ, Chandel NS (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol Cell 61:199–209. doi:10.1016/j.molcel.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  21. Mittal SPK, Khole S, Jagadish N, Ghosh D, Gadgil V, Sinkar V, Ghaskadbi SS (2016) Andrographolide protects liver cells from H2O2 induced cell death by upregulation of Nrf-2/HO-1 mediated via adenosine A2a receptor signalling. Biochim Biophys Acta Gen Subj 1860:2377–2390. doi:10.1016/j.bbagen.2016.07.005

    Article  CAS  Google Scholar 

  22. Montgomery MK, Turner N (2015) Mitochondrial dysfunction and insulin resistance: an update. Endocrine Connections 4:R1–R15. doi:10.1530/EC-14-0092

    Article  PubMed  Google Scholar 

  23. Phillips NR, Sprouse ML, Roby RK (2014) Simultaneous quantification of mitochondrial DNA copy number and deletion ratio: a multiplex real-time PCR assay. Sci Rep 4:3887. doi:10.1038/srep03887

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rodrigues MF, Carvalho E, Pezzuto P, Rumjanek FD, Amoêdo ND (2015) Reciprocal modulation of histone deacetylase inhibitors sodium butyrate and trichostatin A on the energy metabolism of breast cancer cells. J Cell Biochem 116:797–808. doi:10.1002/jcb.25036

    Article  CAS  PubMed  Google Scholar 

  25. Sotelo-Hitschfeld T, Niemeyer MI, Machler P, Ruminot I, Lerchundi R, Wyss MT, Stobart J, Fernandez-Moncada I, Valdebenito R, Garrido-Gerter P, Contreras-Baeza Y, Schneider BL, Aebischer P, Lengacher S, San Martin A, Le Douce J, Bonvento G, Magistretti PJ, Sepulveda FV, Weber B, Barros LF (2015) Channel-mediated lactate release by K(+)-stimulated astrocytes. J Neurosci 35:4168–4178. doi:10.1523/JNEUROSCI.5036-14.2015

    Article  CAS  PubMed  Google Scholar 

  26. Valdecantos MP, Prieto-Hontoria PL, Pardo V, Módol T, Santamaría B, Weber M, Herrero L, Serra D, Muntané J, Cuadrado A, Moreno-Aliaga MJ, Alfredo Martínez J, Valverde ÁM (2015) Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes. Free Radical Bio Med 84:263–278. doi:10.1016/j.freeradbiomed.2015.03.019

    Article  Google Scholar 

  27. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell B 39:44–84. doi:10.1016/j.biocel.2006.07.001

    Article  CAS  Google Scholar 

  28. Walsh ME, Bhattacharya A, Sataranatarajan K, Qaisar R, Sloane L, Rahman MM, Kinter M, Van Remmen H (2015) The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell 14:957–970. doi:10.1111/acel.12387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu QQ, Xiao FJ, Sun HY, Shi XF, Wang H, Yang YF, Li YX, Wang LS, Ge RL (2016) Ptpmt1 induced by HIF-2α regulates the proliferation and glucose metabolism in erythroleukemia cells. Biochem Biophys Res Commun 471:459–465. doi:10.1016/j.bbrc.2016.02.053

    Article  CAS  PubMed  Google Scholar 

  30. Zuo L, Lu M, Zhou Q, Wei W, Wang Y (2013) Butyrate suppresses proliferation and migration of RKO colon cancer cells though regulating endocan expression by MAPK signaling pathway. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association. doi:10.1016/j.fct.2013.10.028

Download references

Acknowledgments

The study was supported by the 12th Five-year Plan for Science and Technology Development of China (No. 2012BAD33B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s13105-017-0593-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, X., Jiang, Z., Tang, X. et al. Sodium butyrate protects against oxidative stress in HepG2 cells through modulating Nrf2 pathway and mitochondrial function. J Physiol Biochem 73, 405–414 (2016). https://doi.org/10.1007/s13105-017-0568-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-017-0568-y

Keywords

Navigation