Skip to main content

Advertisement

Log in

IL-5 blocks apoptosis and tau hyperphosphorylation induced by Aβ25–35 peptide in PC12 cells

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The primary features of Alzheimer’s disease (AD) are extracellular amyloid plaques consisting mainly of deposits of amyloid β (Aβ) peptides and intracellular neurofibrillary tangles (NFTs). Sets of evidence suggest that interleukin-5 (IL-5) is involved in the pathogenesis of AD. Herein, we investigated the protective role of IL-5 in PC12 cells, to provide new insights into understanding this disease. Western blot was employed to assess the protein levels of Bax and phospho-tau as well as phospho-JAK2; MTT assay was performed to decipher cell viability. Treatment of IL-5 decreased Aβ25–35-induced tau phosphorylation and apoptosis, effects blunted by JAK2 inhibition. IL-5 prevents Aβ25–35-evoked tau protein hyperphosphorylation and apoptosis through JAK2 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  1. Ashenafi S, Fuente A, Criado JM, Riolobos AS, Heredia M, Yajeya J (2005) Beta-amyloid peptide25-35 depresses excitatory synaptic transmission in the rat basolateral amygdala “in vitro”. Neurobiol Aging 26:419–428

    Article  CAS  PubMed  Google Scholar 

  2. Bloom GS (2014) Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71:505–508

    Article  PubMed  Google Scholar 

  3. Buckingham SD, Jones AK, Brown LA, Sattelle DB (2009) Nicotinic acetylcholine receptor signalling: roles in Alzheimer’s disease and amyloid neuroprotection. Pharmacol Rev 61:39–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chiba T, Yamada M, Sasabe J, Terashita K, Shimoda M, Matsuoka M, Aiso S (2009) Amyloid-beta causes memory impairment by disturbing the JAK2/STAT3 axis in hippocampal neurons. Mol Psychiatry 14:206–222

    Article  CAS  PubMed  Google Scholar 

  5. Darvin P, Joung YH, Yang YM (2013) JAK2-STAT5B pathway and osteoblast differentiation. JAKSTAT 2:e24931

    PubMed  PubMed Central  Google Scholar 

  6. Delacourte A, Defossez A (1986) Alzheimer’s disease: tau proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments. J Neurol Sci 76:173–186

    Article  CAS  PubMed  Google Scholar 

  7. Essa MM, Subash S, Akbar M, Al-Adawi S, Guillemin GJ (2015) Long-term dietary supplementation of pomegranates, figs and dates alleviate neuroinflammation in a transgenic mouse model of Alzheimer’s disease. PLoS One 10:e0120964

    Article  PubMed  PubMed Central  Google Scholar 

  8. Han Y, Xu J, Li Z, Yang Z (2013) Neuroprotective effect of leukemia inhibitory factor on antimycin A-induced oxidative injury in differentiated PC12 cells. J Mol Neurosci 50:577–585

    Article  CAS  PubMed  Google Scholar 

  9. Hofmann H-D, Kirsch M (2012) JAK2-STAT3 signaling: a novel function and a novel mechanism. JAKSTAT 1:191–193

    PubMed  PubMed Central  Google Scholar 

  10. Hoppenot D, Malakauskas K, Lavinskiene S, Sakalauskas R (2015) p-STAT6, PU.1, and NF-κB are involved in allergen-induced late-phase airway inflammation in asthma patients. BMC Pulm Med 15:122

    Article  PubMed  PubMed Central  Google Scholar 

  11. Immune regulatory and neuroprotective properties of preimplantation factor: from newborn to adult 2015 1;156:10–25.

  12. Lins C, Borojevic R (2001) Interleukin-5 receptor alpha chain expression and splicing during brain development in mice. Growth Factors 19:145–152

    Article  CAS  PubMed  Google Scholar 

  13. Lopez AF, Hercus TR, Ekert P, Littler DR, Guthridge M, Thomas D, Ramshaw HS, Stomski F, Perugini M, D’Andrea R, Grimbaldeston M, Parker MW (2010) Molecular basis of cytokine receptor activation. IUBMB Life 62:509–518

    Article  CAS  PubMed  Google Scholar 

  14. Mrak RE, Sheng JG, Griffin WS (1995) Glial cytokines in Alzheimer’s disease: review and pathogenic implications. Hum Pathol 26:816–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pardanani A, Gotlib JR, Jamieson C, Cortes JE, Talpaz M, Stone RM, Silverman MH, Gilliland G, Shorr J, Tefferi A (2011) Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol 29:789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Quelle FW, Sato N, Witthuhn BA, Inhorn RC, Eder M, Miyajima A, Griffin JD, Ihle JN (1994) JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol Cell Biol 14:4335–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754

    Article  CAS  PubMed  Google Scholar 

  18. Sheikh AM, Nagai A, Wakabayashi K, Narantuya D, Kobayashi S, Yamaguchi S, Kim SU (2011) Mesenchymal stem cell transplantation modulates neuroinflammation in focal cerebral ischemia: contribution of fractalkine and IL-5. Neurobiol Dis 41:717–724

    Article  CAS  PubMed  Google Scholar 

  19. Takashima A, Honda T, Yasutake K, Michel G, Murayama O, Murayama M, Ishiguro K, Yamaguchi H (1998) Activation of tau protein kinase I/glycogen synthase kinase-3beta by amyloid beta peptide (25-35) enhances phosphorylation of tau in hippocampal neurons. Neurosci Res 31:317–323

    Article  CAS  PubMed  Google Scholar 

  20. Verma A, Kambhampati S, Parmar S, Platanias LC (2003) Jak family of kinases in cancer. Cancer Metastasis Rev 22:423–434

    Article  CAS  PubMed  Google Scholar 

  21. Winter PS, Sarosiek KA, Lin KH, Meggendorfer M, Schnittger S, Letai A, Wood KC (2014) RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis. Sci Signal 7:ra122–ra122

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yankner BA, Duffy LK, Kirschner DA (1990) Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 250:279–282

    Article  CAS  PubMed  Google Scholar 

  23. Zambrano A, Otth C, Mujica L, Concha II, Maccioni RB (2007) Interleukin-3 prevents neuronal death induced by amyloid peptide. BMC Neurosci 8:82

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zambrano A, Otth C, Maccioni RB, Concha II (2010) IL-3 controls tau modifications and protects cortical neurons from neurodegeneration. Curr Alzheimer Res 7:615–624

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Yuanyuan Zhou and Chaoyan Li contributed equally and thus share the first authorship

Electronic supplementary material

Supplementary data 1

(PPTX 750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Li, C., Li, D. et al. IL-5 blocks apoptosis and tau hyperphosphorylation induced by Aβ25–35 peptide in PC12 cells. J Physiol Biochem 73, 259–266 (2017). https://doi.org/10.1007/s13105-017-0550-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-017-0550-8

Keywords

Navigation