Skip to main content
Log in

MicroRNA-9 regulates cardiac fibrosis by targeting PDGFR-β in rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The proliferation of cardiac fibroblasts (CFs) and excessive deposition of extracellular matrix (ECM) are the main pathological characteristics of cardiac fibrosis. In recent years, microRNAs (miRNAs) have been found to be a new kind of regulator in cardiac fibrosis. The purpose of this study was to investigate the role of microRNA-9 (miR-9) in the process of cardiac fibrosis and its mechanism. Treatment of cultured neonatal rat CFs with PDGF-BB or serum suppressed the expression of miR-9. Overexpression of miR-9 obviously inhibited neonatal rat CFs proliferation and collagen production as detected by MTT assays, qRT-PCR, and western blotting. The effects of miR-9 in CFs were abrogated by co-transfection with miR-9 inhibitors. Overexpression of miR-9 reduced the mRNA and protein levels of PDGFR-βand its downstream protein, extracellular signal-regulated kinase (ERK) 1/2. Silencing PDGFR-βby small interfering RNA mimicked the anti-fibrotic action of miR-9, whereas overexpression of PGDFR-β canceled the effect of miR-9 in cultured CFs. Dual-luciferase reporter assays showed that PDGFR-βwas a direct target of miR-9. Overexpression of miR-9 inhibited cardiac fibrosis by targeting PDGFR-β, indicating that miR-9 might play a role in the treatment of cardiac fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PDGF:

Platelet-derived growth factor

PDGFR:

Platelet-derived growth factor receptor

miRNA:

microRNA

miR-9:

microRNA-9

CFs:

Cardiac fibroblasts

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

ECM:

Extracellular matrix

ERK:

Extracellular signal regulated kinase

UTR:

Untranslated region

siRNA:

Small interfering RNA

DMSO:

Dimethyl sulphoxide

References

  1. Barana A, Matamoros M, Dolz-Gaitón P, Pérez-Hernández M, Amorós I, Núñez M, Sacristán S, Pedraz Á, Pinto Á, Fernández-Avilés F, Tamargo J, Delpón E, Caballero R (2014) Circ Arrhythm Electrophysiol 7(5):861–868

    Article  CAS  PubMed  Google Scholar 

  2. Berk BC, Fujiwara K, Lehoux S (2007) ECM re-modeling in hypertensive heart disease. J Clin Invest 117:568–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65:40–51

    Article  CAS  PubMed  Google Scholar 

  4. Chen PH, Chen X, He X (2013) Platelet-derived growth factors and their receptors: structural and functional perspectives. Biochim Biophys Acta 1834(10):2176–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dai Y, Khaidakov M, Wang X et al (2013) MicroRNAs involved in the regulation of postischemic cardiac fibrosis. Hypertension 61(4):751–756

    Article  CAS  PubMed  Google Scholar 

  6. Fan H, Ma L, Fan B, Wu J, Yang Z, Wang L (2014) Role of PDGFR-β/PI3K/AKT signaling pathway in PDGF-BB induced myocardial fibrosis in rats. Am J Transl Res 6(6):714–723

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fan B, Ma L, Li Q, Wang L, Zhou J, Wu J (2014) Role of PDGFs/PDGFRs signaling pathway in myocardial fibrosis of DOCA/salt hypertensive rats. Int J Clin Exp Pathol 7:16–27

    PubMed  PubMed Central  Google Scholar 

  8. Kong SY, Park MH, Lee M, Kim JO, Lee HR, Han BW, Svendsen CN, Sung SH, Kim HJ (2015) Kuwanon v inhibits proliferation, promotes cell survival and increases neurogenesis of neural stem cells. PLoS One 10(2), e0118188

    Article  PubMed  PubMed Central  Google Scholar 

  9. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    CAS  PubMed  Google Scholar 

  10. Lorenzen JM, Schauerte C, Hübner A, Kölling M, Martino F, Scherf K, Batkai S, Zimmer K, Foinquinos A, Kaucsar T, Fiedler J, Kumarswamy R, Bang C, Hartmann D, Gupta SK, Kielstein J, Jungmann A, Katus HA, Weidemann F, Müller OJ, Haller H, Thum T (2015) Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis. Eur Heart J

  11. Matkovich SJ, Wang W, Tu Y, Eschenbacher WH, Dorn LE, Condorelli G, Diwan A, Nerbonne JM, Dorn GW 2nd (2010) MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res 106:166–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773(8):1263–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olena AF, Patton JG (2009) Genomic organization of microRNAs. J Cell Physiol 222:540–545

    Google Scholar 

  14. Orenes-Piñero E, Montoro-García S, Patel JV, Valdés M, Marín F, Lip GY (2013) Int J Cardiol 167(5):1651–1659

    Article  PubMed  Google Scholar 

  15. Pan Z, Sun X, Shan H, Wang N, Wang J, Ren J, Feng S, Xie L, Lu C, Yuan Y, Zhang Y, Wang Y, Lu Y, Yang B (2012) MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor pathway. Circulation 126(7):840–850

    Article  CAS  PubMed  Google Scholar 

  16. Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123:255–278

    Article  CAS  PubMed  Google Scholar 

  17. Rotkrua P, Akiyama Y, Hashimoto Y, Otsubo T, Yuasa Y (2011) MiR-9 downregulates CDX2 expression in gastric cancer cells. Int J Cancer 129:2611–2620

    Article  CAS  PubMed  Google Scholar 

  18. Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ, Sen CK (2009) MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 82:21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S (2012) Inhibition of microRNA function by antimiR oligonucleotides. Silence 3:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tao H, Yang JJ, Chen ZW, Xu SS, Zhou X, Zhan HY, Shi KH (2014) DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2. Toxicology 323:42–50

    Article  CAS  PubMed  Google Scholar 

  21. Van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 105:13027–13032

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang Y, Huang XR, Wei LH, Chung AC, Yu CM, Lan HY (2014) miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling. Mol Ther 22(5):974–985

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhao C, Sun G, Li S, Shi Y (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16:365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiKun Ma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Ma, L., Fan, H. et al. MicroRNA-9 regulates cardiac fibrosis by targeting PDGFR-β in rats. J Physiol Biochem 72, 213–223 (2016). https://doi.org/10.1007/s13105-016-0471-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0471-y

Keywords

Navigation