Skip to main content
Log in

Antiatherogenic and antitumoral properties of Opuntia cladodes: inhibition of low density lipoprotein oxidation by vascular cells, and protection against the cytotoxicity of lipid oxidation product 4-hydroxynonenal in a colorectal cancer cellular model

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Opuntia species have been used for thousands of years as a folk medicine in the treatment of diseases. However, the components and protective mechanisms are still unclear. We make the hypothesis that Opuntia species may protect the development of oxidative stress-associated diseases, such as atherosclerosis or colon cancer, via their antioxidant properties. We investigated the protective effect of Opuntia cladode powder against the oxidation of low-density lipoprotein (LDL) evoked by vascular endothelial cells, an important risk factor for atherosclerosis development, and the toxicity of 4-hydroxynonenal (a major lipid peroxidation product) on normal (Apc +/+) and preneoplastic (Apc min/+) immortalized epithelial colon cells. Various Opuntia species classified according to their degree of domestication, from the wildest (Opuntia streptacantha, Opuntia hyptiacantha, Opuntia megacantha), medium (Opuntia albicarpa), to the most domesticated (Opuntia ficus-indica) were tested. Cladode powders prepared from these Opuntia species significantly inhibited LDL oxidation induced by incubation with murine endothelial cells and the subsequent foam cell formation of RAW 264.7 murine macrophages and cytotoxicity on murine endothelial cells. Moreover, Opuntia cladode powder blocked the promotion of colon cancer development on an in vitro model of colonocytes. It may be noted that the phenolic acid and flavonoids content, the antioxidant capacity, and the protective effect were relatively similar in all the cladode powders from wild (O. streptacantha) and domesticated Opuntia. Altogether, these data confirm the therapeutic potential of Opuntia cladodes in diseases associated with oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HNE:

4-Hydroxynonenal

LDL:

Low-density lipoprotein

oxLDL:

Oxidized LDL

TBARS:

Thiobarbituric acid-reactive substance

References

  1. Arai H (2014) Oxidative modification of lipoproteins. Subcell Biochem 77:103–114

    Article  CAS  PubMed  Google Scholar 

  2. Bastide N, Chenni F, Audebert M, Santarelli R, Tache S, Naud N, Baradat M, Jouanin I, Surya R, Hobbs DA, Kuhnle GG, Raymond-Letron I, Gueraud F, Corpet D, Pierre F (2015) A central role for heme iron in colon carcinogenesis associated with red meat intake. Cancer Res

  3. Bouguerne B, Belkheiri N, Bedos-Belval F, Vindis C, Uchida K, Duran H, Grazide MH, Baltas M, Salvayre R, Nègre-Salvayre A (2011) Antiatherogenic effect of bisvanillyl-hydralazone, a new hydralazine derivative with antioxidant, carbonyl scavenger and antiapoptotic properties. Antioxid Redox Signal 14:2093–2106

    Article  CAS  PubMed  Google Scholar 

  4. Cathcart MK (2004) Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: contribution to atherosclerosis. Arterioscler Thromb Vasc Biol 24:23–28

    Article  CAS  PubMed  Google Scholar 

  5. Chavez-Santoscoy RA, Gutierrez-Uribe JA, Serna-Saldívar SO (2009) Phenolic composition, antioxidant capacity and in vitro cancer cell cytotoxicity of nine prickly pear (Opuntia spp.) juices. Plant Foods Hum Nutr 64:146–152

    Article  CAS  PubMed  Google Scholar 

  6. Cheng Z, Moore J, Yu L (2006) High-throughput relative DPPH radical scavenging capacity assay. J Agric Food Chem 54:7429–7436

    Article  CAS  PubMed  Google Scholar 

  7. Chisolm GM, Hazen SL, Fox PL, Cathcart MK (1999) The oxidation of lipoproteins by monocytes-macrophages. Biochemical and biological mechanisms. J Biol Chem 274:25959–25962

    Article  CAS  PubMed  Google Scholar 

  8. Dalleau S, Baradat M, Guéraud F, Huc L (2013) Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ 20:1615–1630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. El-Mostafa K, El Kharrassi Y, Badreddine A, Andreoletti P, Vamecq J, El Kebbaj MS, Latruffe N, Lizard G, Nasser B, Cherkaoui-Malki M (2014) Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules 19:14879–14901

    Article  PubMed  Google Scholar 

  10. Fernández-López JA, Almela L, Obón JM, Castellar R (2010) Determination of antioxidant constituents in cactus pear fruits. Plant Foods Hum Nutr 65:253–259

    Article  PubMed  Google Scholar 

  11. Forest V, Clement M, Pierre F, Meflah K, Menanteau J (2003) Butyrate restores motile function and actin cytoskeletal network integrity in apc mutated mouse colon epithelial cells. Nutr Cancer 45:84–92

    Article  CAS  PubMed  Google Scholar 

  12. Galvani S, Coatrieux C, Elbaz M, Grazide MH, Thiers JC, Parini A, Uchida K, Kamar N, Rostaing L, Baltas M, Salvayre R, Nègre-Salvayre A (2008) Carbonyl scavenger and antiatherogenic effects of hydrazine derivatives. Free Radic Biol Med 45:1457–1467

    Article  CAS  PubMed  Google Scholar 

  13. Gasc N, Taché S, Rathahao E, Bertrand-Michel J, Roques V, Guéraud F (2007) 4-hydroxynonenal in foodstuffs: heme concentration, fatty acid composition and freeze-drying are determining factors. Redox Rep 12:40–44

    Article  CAS  PubMed  Google Scholar 

  14. Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    Article  CAS  PubMed  Google Scholar 

  15. Guevara-Figueroa T, Jiménez-Islas H, Reyes-Escogido ML, Mortensen AG, Laursen B, Lin LW, De León-Rodríguez A, Fomsgaard IS, Barba de la Rosa AP (2010) Proximate composition, phenolic acids, and flavonoids characterization of commercial and wild nopal (Opuntia spp.). J Food Comp Ana 23:525–532

    Article  CAS  Google Scholar 

  16. Hahm SW, Park J, Oh SY, Lee CW, Park KY, Kim H, Son YS (2015) Anticancer properties of extracts from Opuntia humifusa against human cervical carcinoma cells. J Med Food 18:31–44

    Article  CAS  PubMed  Google Scholar 

  17. Heinecke JW (1997) Mechanisms of oxidative damage of low density lipoprotein in human atherosclerosis. Curr Opin Lipidol 8:268–274

    Article  CAS  PubMed  Google Scholar 

  18. Janisch KM, Williamson G, Needs P, Plumb GW (2004) Properties of quercetin conjugates: modulation of LDL oxidation and binding to human serum albumin. Free Radic Res 38:877–884

    Article  CAS  PubMed  Google Scholar 

  19. Jiang X, Yang Z, Chandrakala AN, Pressley D, Parthasarathy S (2011) Oxidized low density lipoproteins—do we know enough about them? Cardiovasc Drugs Ther 25:367–377

    Article  CAS  PubMed  Google Scholar 

  20. Matias A, Nunes SL, Poejo J, Mecha E, Serra AT, Madeira JPA, Bronze MR, Duarte CMM (2014) Antioxidant and anti-inflammatory activity of a flavonoid-rich concentrate recovered from Opuntia ficus-indica juice. Food Funct 5:3269–3280

    Article  CAS  PubMed  Google Scholar 

  21. Muller G, Morawietz H (2009) Nitric oxide, NAD(P)H oxidase, and atherosclerosis. Antioxid Redox Signal 11:1711–1731

    Article  CAS  PubMed  Google Scholar 

  22. Narayan S, Roy D (2003) Role of APC and DNA mismatch repair genes in the development of colorectal cancers. Mol Cancer 2:41

    Article  PubMed Central  PubMed  Google Scholar 

  23. Naselli F, Tesoriere L, Caradonna F, Bellavia D, Attanzio A, Gentile C, Livrea MA (2014) Anti-proliferative and pro-apoptotic activity of whole extract and isolated indicaxanthin from Opuntia ficus-indica associated with re-activation of the onco-suppressor p16(INK4a) gene in human colorectal carcinoma (Caco-2) cells. Biochem Biophys Res Commun 450:652–658

    Article  CAS  PubMed  Google Scholar 

  24. Negre-Salvayre A, Auge N, Ayala V, Basaga H, Boada J, Brenke R, Chapple S, Cohen G, Feher J, Grune T, Lengyel G, Mann GE, Pamplona R, Poli G, Portero-Otin M, Riahi Y, Salvayre R, Sasson S, Serrano J, Shamni O, Siems W, Siow RC, Wiswedel I, Zarkovic K, Zarkovic N (2010) Pathological aspects of lipid peroxidation. Free Radic Res 44:1125–1171

    Article  CAS  PubMed  Google Scholar 

  25. Ozgen M, Reese RN, Tulio AZ, Scheerens JC, Miller AR (2006) Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2’-diphenyl-1-picrylhydrazyl (DPPH) methods. J Agric Food Chem 54:1151–1157

    Article  CAS  PubMed  Google Scholar 

  26. Pierre F, Tache S, Guéraud F, Rerole AL, Jourdan ML, Petit C (2007) Apc mutation induces resistance of colonic cells to lipoperoxide-triggered apoptosis induced by faecal water from haem-fed rats. Carcinogenesis 28:321–327

    Article  CAS  PubMed  Google Scholar 

  27. Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H (2014) Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med 5:927–946

    PubMed Central  PubMed  Google Scholar 

  28. Ramirez Tobias HM, Reyes Agüero JA, Pinos Rodriguez JM, Aguirre Rivera JR (2007) Efecto de la especie y madurez sobre el contenido de nutrientes de Cladodios de nopal. Agrociencia 41:619–626

    Google Scholar 

  29. Reyes-Agüero JA, Aguirre-Rivera JR, Flores-Flores JL (2005) Variación morfológica de Opuntia (Cactaceae) en relación con su domesticación en la Altiplanicie Meridional de México. Interciencia 30:476–484

    Google Scholar 

  30. Sreekanth D, Arunasree MK, Roy KR, Chandramohan Reddy T, Reddy GV, Reddanna P (2007) Betanin a betacyanin pigment purified from fruits of Opuntia ficus-indica induces apoptosis in human chronic myeloid leukemia Cell line-K562. Phytomedicine 14:739–746

    Article  CAS  PubMed  Google Scholar 

  31. Steinbrecher UP (1999) Receptors for oxidized low density lipoprotein. Biochim Biophys Acta 1436:279–298

    Article  CAS  PubMed  Google Scholar 

  32. Stintzing FC, Carle R (2005) Cactus stems (Opuntia spp.): a review on their chemistry, technology, and uses. Mol Nutr Food Res 49:175–194

    Article  CAS  PubMed  Google Scholar 

  33. Tsimikas S, Miller YI (2011) Oxidative modification of lipoproteins: mechanisms, role in inflammation and potential clinical applications in cardiovascular diseases. Curr Pharm Des 17:27–37

    Article  CAS  PubMed  Google Scholar 

  34. Valente LLM, da Paixao D, do Nascimento AC, dos Santos PFP, Sheinvar LA, Moura MRL, Tinoco LW, Gomes LNF, da Silva JFM (2010) Antiradical activity, nutritional potential and flavonoids of the cladodes of Opuntia monacantha (Cactaceae). Food Chem 123:1127–1131

    Article  CAS  Google Scholar 

  35. Vieira O, Escargueil-Blanc I, Meilhac O, Basile JP, Laranjinha J, Almeida L, Salvayre R, Nègre-Salvayre A (1998) Effect of dietary phenolic compounds on apoptosis of human cultured endothelial cells induced by oxidized LDL. Br J Pharmacol 123:565–573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. World Cancer Research Fund. WCRF (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. World Cancer Research Fund and American Institute for Cancer Research, Washington

    Google Scholar 

  37. Yeddes N, Chérif J, Guyot S, Sotin H, Ayadi MT (2013) Comparative Study of antioxidant power, polyphenols, flavonoids and betacyanins of the peel and pulp of three Tunisian Opuntia forms. Antioxidants 2:37–51

    Article  CAS  Google Scholar 

  38. Young JE, Zhao X, Carey EE, Welti R, Yang SS, Wang W (2005) Phytochemical phenolics in organically grown vegetables. Mol Nutr Food Res 49:1136–1142

    Article  CAS  PubMed  Google Scholar 

  39. Zorgui L, Ayed-Boussema I, Ayed Y, Bacha H, Hassen W (2009) The antigenotoxic activities of cactus (Opuntia ficus-indica) cladodes against the mycotoxin zearalenone in Balb/c mice: prevention of micronuclei, chromosome aberrations and DNA fragmentation. Food Chem Toxicol 47:662–667

    Article  CAS  PubMed  Google Scholar 

  40. Zourgui L, Golli EE, Bouaziz C, Bacha H, Hassen W (2008) Cactus (Opuntia ficus-indica) cladodes prevent oxidative damage induced by the mycotoxin zearalenone in Balb/C mice. Food Chem Toxicol 46:1817–1824

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by INSERM, University Toulouse 3, and by the bilateral French/Mexican ANR (French National Research Agency)/CONACYT (National council of Science and Technology of Mexico) project BIOPUNTIA (ANR-2010-INTB-1702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Negre-Salvayre.

Additional information

Julia Keller and Caroline Camaré contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, J., Camaré, C., Bernis, C. et al. Antiatherogenic and antitumoral properties of Opuntia cladodes: inhibition of low density lipoprotein oxidation by vascular cells, and protection against the cytotoxicity of lipid oxidation product 4-hydroxynonenal in a colorectal cancer cellular model. J Physiol Biochem 71, 577–587 (2015). https://doi.org/10.1007/s13105-015-0408-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-015-0408-x

Keywords

Navigation