Skip to main content

Advertisement

Log in

Role of Krüppel-like factors in cancer stem cells

  • Mini Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Cancer stem cells (CSCs), or cancer cells with stem cell properties, are a rare population of tumor bulk and are recognized to be responsible for cancer recurrence, drug resistance, and metastasis. However, the molecular mechanisms of how to regulate the differentiation and self-renewing of CSCs are poorly understood. Krüppel-like factors (KLFs) are essential DNA-binding transcriptional regulators with diverse functions in various cellular processes, including differentiation, proliferation, inflammation, migration, and pluripotency. Recent progress has highlighted the significance of KLFs in tumor progression and CSCs. The regulatory functions of KLFs in the development of cancer and CSCs have become a burgeoning area of intense research. In this review, we summarize the current understanding and progress of the transcriptional regulation of KLFs in CSCs and discuss the functional implications of targeting CSCs by KLFs for cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Baccelli I, Trumpp A (2012) The evolving concept of cancer and metastasis stem cells. J Cell Biol 198:281–293

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Bin Z, Ke-Yi L, Wei-Feng Z et al (2013) Downregulation of KLF8 expression by shRNA induces inhibition of cell proliferation in CAL27 human oral cancer cells. Med Oral Patol Oral Cir Bucal 18:e591–e596

    PubMed Central  PubMed  Google Scholar 

  4. Cabarcas SM, Mathews LA, Farrar WL (2011) The cancer stem cell niche—there goes the neighborhood. Int J Cancer 129:2315–2327

    CAS  PubMed  Google Scholar 

  5. Cai XD, Zhou YB, Huang LX et al (2012) Reduced expression of Kruppel-like factor 17 is related to tumor growth and poor prognosis in lung adenocarcinoma. Biochem Biophys Res Commun 418:67–73

    CAS  PubMed  Google Scholar 

  6. Camacho-Vanegas O, Till J, Miranda-Lorenzo I, Ozturk B, Camacho SC, Martignetti JA (2013) Shaking the family tree: identification of novel and biologically active alternatively spliced isoforms across the KLF family of transcription factors. FASEB J 27:432–436

    CAS  PubMed  Google Scholar 

  7. Chakroborty D, Sarkar C, Yu H et al (2011) Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Kruppel-like factor-2 expression in tumor endothelial cells. Proc Natl Acad Sci U S A 108:20730–20735

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Chang VH, Chu PY, Peng SL et al (2012) Kruppel-like factor 10 expression as a prognostic indicator for pancreatic adenocarcinoma. Am J Pathol 181:423–430

    CAS  PubMed  Google Scholar 

  9. Chen C, Benjamin MS, Sun X et al (2006) KLF5 promotes cell proliferation and tumorigenesis through gene regulation and the TSU-Pr1 human bladder cancer cell line. Int J Cancer 118:1346–1355

    CAS  PubMed  Google Scholar 

  10. Chen C, Bhalala HV, Vessella RL, Dong JT (2003) KLF5 is frequently deleted and down-regulated but rarely mutated in prostate cancer. Prostate 55:81–88

    CAS  PubMed  Google Scholar 

  11. Chen H, Chen L, Sun L, Zhen H, Li X, Zhang Q (2011) A small interfering RNA targeting the KLF6 splice variant, KLF6-SV1, as gene therapy for gastric cancer. Gastric Cancer 14:339–352

    CAS  PubMed  Google Scholar 

  12. Chen K, Chen Y, Zhu XD et al (2012) Expression and significance of Kruppel-like factor 6 gene in osteosarcoma. Int Orthop 36:2107–2111

    PubMed Central  PubMed  Google Scholar 

  13. Chen J, Li Y, Yu TS et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Chen CJ, Lin SE, Lin YM, Lin SH, Chen DR, Chen CL (2012) Association of expression of Kruppel-like factor 4 and Kruppel-like factor 5 with the clinical manifestations of breast cancer. Pathol Oncol Res 18:161–168

    CAS  PubMed  Google Scholar 

  15. Chiam K, Ryan NK, Ricciardelli C et al (2013) Characterization of the prostate cancer susceptibility gene KLF6 in human and mouse prostate cancers. Prostate 73:182–193

    CAS  PubMed  Google Scholar 

  16. Cho YG, Choi BJ, Kim CJ et al (2006) Genetic alterations of the KLF6 gene in colorectal cancers. APMIS 114:458–464

    CAS  PubMed  Google Scholar 

  17. Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66:9339–9344

    CAS  PubMed  Google Scholar 

  18. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284

    CAS  PubMed  Google Scholar 

  19. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    CAS  PubMed  Google Scholar 

  20. Dereeper A, Guignon V, Blanc G et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Diakiw SM, Perugini M, Kok CH et al (2013) Methylation of KLF5 contributes to reduced expression in acute myeloid leukaemia and is associated with poor overall survival. Br J Haematol 161:884–888

    CAS  PubMed  Google Scholar 

  22. Dong P, Kaneuchi M, Xiong Y et al (2013) Identification of KLF17 as a novel epithelial to mesenchymal transition inducer via direct activation of TWIST1 in endometrioid endometrial cancer. Carcinogenesis 5:760–768

    Google Scholar 

  23. Dong Z, Yang L, Lai D (2013) KLF5 strengthens drug resistance of ovarian cancer stem-like cells by regulating survivin expression. Cell Prolif 46:425–435

    CAS  PubMed  Google Scholar 

  24. Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C (2012) Defining the mode of tumour growth by clonal analysis. Nature 488:527–530

    CAS  PubMed  Google Scholar 

  25. Faryna M, Konermann C, Aulmann S et al (2012) Genome-wide methylation screen in low-grade breast cancer identifies novel epigenetically altered genes as potential biomarkers for tumor diagnosis. FASEB J 26:4937–4950

    CAS  PubMed  Google Scholar 

  26. Fernandez-Zapico ME, Mladek A, Ellenrieder V, Folch-Puy E, Miller L, Urrutia R (2003) An mSin3A interaction domain links the transcriptional activity of KLF11 with its role in growth regulation. EMBO J 22:4748–4758

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Fu WJ, Li JC, Wu XY et al (2010) Small interference RNA targeting Kruppel-like factor 8 inhibits the renal carcinoma 786-0 cells growth in vitro and in vivo. J Cancer Res Clin Oncol 136:1255–1265

    CAS  PubMed  Google Scholar 

  28. Funnell AP, Mak KS, Twine NA et al (2013) Generation of mice deficient in both KLF3/BKLF and KLF8 reveals a genetic interaction and a role for these factors in embryonic globin gene silencing. Mol Cell Biol 33:2976–2987

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Gehrau RC, D’Astolfo DS, Dumur CI, Bocco JL, Koritschoner NP (2010) Nuclear expression of KLF6 tumor suppressor factor is highly associated with overexpression of ERBB2 oncoprotein in ductal breast carcinomas. PLoS One 5:e8929

    PubMed Central  PubMed  Google Scholar 

  30. Giefing M, Wierzbicka M, Rydzanicz M, Cegla R, Kujawski M, Szyfter K (2008) Chromosomal gains and losses indicate oncogene and tumor suppressor gene candidates in salivary gland tumors. Neoplasma 55:55–60

    CAS  PubMed  Google Scholar 

  31. Gilbertson RJ, Graham TA (2012) Cancer: resolving the stem-cell debate. Nature 488:462–463

    CAS  PubMed  Google Scholar 

  32. Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Gumireddy K, Li A, Gimotty PA et al (2009) KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer. Nat Cell Biol 11:1297–1304

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Hao J, Zhang Y, Deng M et al (2014) MicroRNA control of epithelial-mesenchymal transition in cancer stem cells. Int J Cancer 135:1019–1027

    CAS  PubMed  Google Scholar 

  35. Hao J, Zhao S, Zhang Y et al (2014) Emerging role of microRNAs in cancer and cancer stem cells. J Cell Biochem 115:605–610

    CAS  PubMed  Google Scholar 

  36. Hart LS, El-Deiry WS (2008) Invincible, but not invisible: imaging approaches toward in vivo detection of cancer stem cells. J Clin Oncol 26:2901–2910

    PubMed  Google Scholar 

  37. Hartel M, Narla G, Wente MN et al (2008) Increased alternative splicing of the KLF6 tumour suppressor gene correlates with prognosis and tumour grade in patients with pancreatic cancer. Eur J Cancer 44:1895–1903

    CAS  PubMed  Google Scholar 

  38. He HJ, Gu XF, Xu WH, Yang DJ, Wang XM, Su Y (2013) Kruppel-like factor 8 is a novel androgen receptor co-activator in human prostate cancer. Acta Pharmacol Sin 34:282–288

    PubMed Central  PubMed  Google Scholar 

  39. Henson BJ, Gollin SM (2010) Overexpression of KLF13 and FGFR3 in oral cancer cells. Cytogenet Genome Res 128:192–198

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Ho A, Fusenig N (2011) Cancer stem cells: a promising concept and therapeutic challenge. Int J Cancer 129:2309

    CAS  PubMed  Google Scholar 

  41. Hoffmeyer K, Raggioli A, Rudloff S et al (2012) Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science 336:1549–1554

    CAS  PubMed  Google Scholar 

  42. Hu R, Zuo Y, Zuo L et al (2011) KLF4 expression correlates with the degree of differentiation in colorectal cancer. Gut Liver 5:154–159

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Huang D, Gao Q, Guo L et al (2009) Isolation and identification of cancer stem-like cells in esophageal carcinoma cell lines. Stem Cells Dev 18:465–473

    CAS  PubMed  Google Scholar 

  44. Ivanov SV, Ivanova AV, Salnikow K, Timofeeva O, Subramaniam M, Lerman MI (2008) Two novel VHL targets, TGFBI (BIGH3) and its transactivator KLF10, are up-regulated in renal clear cell carcinoma and other tumors. Biochem Biophys Res Commun 370:536–540

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Jiang J, Chan YS, Loh YH et al (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10:353–360

    PubMed  Google Scholar 

  46. Kang L, Lu B, Xu J, Hu H, Lai M (2008) Downregulation of Kruppel-like factor 9 in human colorectal cancer. Pathol Int 58:334–338

    CAS  PubMed  Google Scholar 

  47. King KE, Iyemere VP, Weissberg PL, Shanahan CM (2003) Kruppel-like factor 4 (KLF4/GKLF) is a target of bone morphogenetic proteins and transforming growth factor beta 1 in the regulation of vascular smooth muscle cell phenotype. J Biol Chem 278:11661–11669

    CAS  PubMed  Google Scholar 

  48. Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14:275–291

    CAS  PubMed  Google Scholar 

  49. Kwak MK, Lee HJ, Hur K et al (2008) Expression of Kruppel-like factor 5 in human gastric carcinomas. J Cancer Res Clin Oncol 134:163–167

    CAS  PubMed  Google Scholar 

  50. Lai JK, Wu HC, Shen YC, Hsieh HY, Yang SY, Chang CC (2012) Kruppel-like factor 4 is involved in cell scattering induced by hepatocyte growth factor. J Cell Sci 125:4853–4864

    CAS  PubMed  Google Scholar 

  51. Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    CAS  PubMed  Google Scholar 

  52. Le MC, Bubendorf L, Ruiz C et al (2013) Klf4 transcription factor is expressed in the cytoplasm of prostate cancer cells. Eur J Cancer 49:955–963

    Google Scholar 

  53. Leng Z, Tao K, Xia Q et al (2013) Kruppel-like factor 4 acts as an oncogene in colon cancer stem cell-enriched spheroid cells. PLoS One 8:e56082

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Li Y, Kong D, Ahmad A, Bao B, Sarkar FH (2013) Pancreatic cancer stem cells: emerging target for designing novel therapy. Cancer Lett 338:94–100

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Limame R, de Beeck KO, Lardon F, De Wever O, Pauwels P (2014) Kruppel-like factors in cancer progression: three fingers on the steering wheel. Oncotarget 5:29–48

    PubMed Central  PubMed  Google Scholar 

  56. Lin ZS, Chu HC, Yen YC, Lewis BC, Chen YW (2012) Kruppel-like factor 4, a tumor suppressor in hepatocellular carcinoma cells reverts epithelial mesenchymal transition by suppressing slug expression. PLoS One 7:e43593

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Liu L, Liu N, Xu M et al (2012) Lentivirus-delivered Kruppel-like factor 8 small interfering RNA inhibits gastric cancer cell growth in vitro and in vivo. Tumour Biol 33:53–61

    PubMed  Google Scholar 

  58. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196:395–406

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Lyng H, Brovig RS, Svendsrud DH et al (2006) Gene expressions and copy numbers associated with metastatic phenotypes of uterine cervical cancer. BMC Genomics 7:268

    PubMed Central  PubMed  Google Scholar 

  60. Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21:283–296

    CAS  PubMed  Google Scholar 

  61. Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    PubMed Central  CAS  PubMed  Google Scholar 

  62. McConnell BB, Yang VW (2010) Mammalian Kruppel-like factors in health and diseases. Physiol Rev 90:1337–1381

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Meyer SE, Hasenstein JR, Baktula A et al (2010) Kruppel-like factor 5 is not required for K-RasG12D lung tumorigenesis, but represses ABCG2 expression and is associated with better disease-specific survival. Am J Pathol 177:1503–1513

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Miettinen PJ, Ebner R, Lopez AR, Derynck R (1994) TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127:2021–2036

    CAS  PubMed  Google Scholar 

  65. Miller IJ, Bieker JJ (1993) A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol 13:2776–2786

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Miyoshi N, Ishii H, Nagai K et al (2010) Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci U S A 107:40–45

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Mori A, Moser C, Lang SA et al (2009) Up-regulation of Kruppel-like factor 5 in pancreatic cancer is promoted by interleukin-1beta signaling and hypoxia-inducible factor-1alpha. Mol Cancer Res 7:1390–1398

    CAS  PubMed  Google Scholar 

  68. Nagata S, Hirano K, Kanemori M, Sun LT, Tada T (2012) Self-renewal and pluripotency acquired through somatic reprogramming to human cancer stem cells. PLoS One 7:e48699

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Nakahara Y, Northcott PA, Li M et al (2010) Genetic and epigenetic inactivation of Kruppel-like factor 4 in medulloblastoma. Neoplasia 12:20–27

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Nakamura Y, Migita T, Hosoda F et al (2009) Kruppel-like factor 12 plays a significant role in poorly differentiated gastric cancer progression. Int J Cancer 125:1859–1867

    CAS  PubMed  Google Scholar 

  71. Nandan MO, Ghaleb AM, McConnell BB, Patel NV, Robine S, Yang VW (2010) Kruppel-like factor 5 is a crucial mediator of intestinal tumorigenesis in mice harboring combined ApcMin and KRASV12 mutations. Mol Cancer 9:63

    PubMed Central  PubMed  Google Scholar 

  72. Narla G, DiFeo A, Fernandez Y et al (2008) KLF6-SV1 overexpression accelerates human and mouse prostate cancer progression and metastasis. J Clin Invest 118:2711–2721

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12:133–143

    CAS  PubMed  Google Scholar 

  74. Nishi M, Sakai Y, Akutsu H et al (2013) Induction of cells with cancer stem cell properties from nontumorigenic human mammary epithelial cells by defined reprogramming factors. Oncogene. doi:10.1038/onc.2012.614

    PubMed Central  Google Scholar 

  75. Okuda H, Xing F, Pandey PR et al (2013) miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res 73:1434–1444

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Oskarsson T (2013) Extracellular matrix components in breast cancer progression and metastasis. Breast 22(Suppl 2):S66–S72

    PubMed  Google Scholar 

  77. Ray A, Alalem M, Ray BK (2013) Loss of epigenetic Kruppel-like factor 4 histone deacetylase (KLF-4-HDAC)-mediated transcriptional suppression is crucial in increasing vascular endothelial growth factor (VEGF) expression in breast cancer. J Biol Chem 288:27232–27242

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Reinholz MM, An MW, Johnsen SA et al (2004) Differential gene expression of TGF beta inducible early gene (TIEG), Smad7, Smad2 and Bard1 in normal and malignant breast tissue. Breast Cancer Res Treat 86:75–88

    CAS  PubMed  Google Scholar 

  79. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    CAS  PubMed  Google Scholar 

  80. Sarig R, Rivlin N, Brosh R et al (2010) Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med 207:2127–2140

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Schepers AG, Snippert HJ, Stange DE et al (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337:730–735

    CAS  PubMed  Google Scholar 

  82. Schuh R, Aicher W, Gaul U et al (1986) A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Kruppel, a Drosophila segmentation gene. Cell 47:1025–1032

    CAS  PubMed  Google Scholar 

  83. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29

    PubMed  Google Scholar 

  84. Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  85. Sun Z, Han Q, Zhou N et al (2013) MicroRNA-9 enhances migration and invasion through KLF17 in hepatocellular carcinoma. Mol Oncol 7:884–894

    CAS  PubMed  Google Scholar 

  86. Tahara E, Kadara H, Lacroix L, Lotan D, Lotan R (2009) Activation of protein kinase C by phorbol 12-myristate 13-acetate suppresses the growth of lung cancer cells through KLF6 induction. Cancer Biol Ther 8:801–807

    CAS  PubMed  Google Scholar 

  87. Tai SK, Yang MH, Chang SY et al (2011) Persistent Kruppel-like factor 4 expression predicts progression and poor prognosis of head and neck squamous cell carcinoma. Cancer Sci 102:895–902

    CAS  PubMed  Google Scholar 

  88. Tang SN, Fu J, Nall D, Rodova M, Shankar S, Srivastava RK (2012) Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int J Cancer 131:30–40

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Taniguchi H, Jacinto FV, Villanueva A et al (2012) Silencing of Kruppel-like factor 2 by the histone methyltransferase EZH2 in human cancer. Oncogene 31:1988–1994

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Tchirkov A, Sapin V, Marceau G et al (2010) Increased expression of the oncogenic KLF6-SV1 transcript in human glioblastoma. Clin Chem Lab Med 48:1167–1170

    CAS  PubMed  Google Scholar 

  91. Teixeira MS, Camacho-Vanegas O, Fernandez Y et al (2007) KLF6 allelic loss is associated with tumor recurrence and markedly decreased survival in head and neck squamous cell carcinoma. Int J Cancer 121:1976–1983

    CAS  PubMed  Google Scholar 

  92. Tetreault MP, Yang Y, Katz JP (2013) Kruppel-like factors in cancer. Nat Rev Cancer 13:701–713

    CAS  PubMed  Google Scholar 

  93. Tiwari N, Meyer-Schaller N, Arnold P et al (2013) Klf4 is a transcriptional regulator of genes critical for EMT, including Jnk1 (Mapk8). PLoS One 8:e57329

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Vaira V, Faversani A, Martin NM et al (2013) Regulation of lung cancer metastasis by Klf4-Numb-like signaling. Cancer Res 73:2695–2705

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Wang X, Lu H, Li T et al (2013) Kruppel-like factor 8 promotes tumorigenic mammary stem cell induction by targeting miR-146a. Am J Cancer Res 3:356–373

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Wang X, Lu H, Urvalek AM et al (2011) KLF8 promotes human breast cancer cell invasion and metastasis by transcriptional activation of MMP9. Oncogene 30:1901–1911

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Wang X, Urvalek AM, Liu J, Zhao J (2008) Activation of KLF8 transcription by focal adhesion kinase in human ovarian epithelial and cancer cells. J Biol Chem 283:13934–13942

    CAS  PubMed  Google Scholar 

  98. Wei D, Kanai M, Jia Z, Le X, Xie K (2008) Kruppel-like factor 4 induces p27Kip1 expression in and suppresses the growth and metastasis of human pancreatic cancer cells. Cancer Res 68:4631–4639

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Wellner U, Schubert J, Burk UC et al (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11:1487–1495

    CAS  PubMed  Google Scholar 

  100. Wong CW, Hou PS, Tseng SF et al (2010) Kruppel-like transcription factor 4 contributes to maintenance of telomerase activity in stem cells. Stem Cells 28:1510–1517

    CAS  PubMed  Google Scholar 

  101. Wu XQ, Huang C, He X et al (2013) Feedback regulation of telomerase reverse transcriptase: new insight into the evolving field of telomerase in cancer. Cell Signal 25:2462–2468

    CAS  PubMed  Google Scholar 

  102. Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1:39–49

    CAS  PubMed  Google Scholar 

  103. Yang T, Cai SY, Zhang J et al (2012) Kruppel-like factor 8 is a new Wnt/beta-catenin signaling target gene and regulator in hepatocellular carcinoma. PLoS One 7:e39668

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829

    CAS  PubMed  Google Scholar 

  105. Ying M, Sang Y, Li Y et al (2011) Kruppel-like family of transcription factor 9, a differentiation-associated transcription factor, suppresses Notch1 signaling and inhibits glioblastoma-initiating stem cells. Stem Cells 29:20–31

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Yori JL, Johnson E, Zhou G, Jain MK, Keri RA (2010) Kruppel-like factor 4 inhibits epithelial-to-mesenchymal transition through regulation of E-cadherin gene expression. J Biol Chem 285:16854–16863

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Yori JL, Seachrist DD, Johnson E et al (2011) Kruppel-like factor 4 inhibits tumorigenic progression and metastasis in a mouse model of breast cancer. Neoplasia 13:601–610

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Yu T, Chen X, Zhang W et al (2012) Regulation of the potential marker for intestinal cells, Bmi1, by beta-catenin and the zinc finger protein KLF4: implications for colon cancer. J Biol Chem 287:3760–3768

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Yu F, Li J, Chen H et al (2011) Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 30:2161–2172

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Zammarchi F, Morelli M, Menicagli M et al (2011) KLF4 is a novel candidate tumor suppressor gene in pancreatic ductal carcinoma. Am J Pathol 178:361–372

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Zhang X, Cruz FD, Terry M, Remotti F, Matushansky I (2013) Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene 32:2249–2260, 2260.e1–21

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Zhang X, Yang JJ, Kim YS, Kim KY, Ahn WS, Yang S (2010) An 8-gene signature, including methylated and down-regulated glutathione peroxidase 3, of gastric cancer. Int J Oncol 36:405–414

    CAS  PubMed  Google Scholar 

  113. Zhenzhen Z, De’an T, Limin X, Wei Y, Min L (2012) New candidate tumor-suppressor gene KLF6 and its splice variant KLF6 SV2 counterbalancing expression in primary hepatocarcinoma. Hepatogastroenterology 59:473–476

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Science and Technology Fund of Sichuan Province no. 2011SZ0096 and National Natural Science Foundation of China nos. 31470904 and 81030034.

Conflict of interest

The authors do not have any conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Hao or Zhihe Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Hao, J., Zheng, Y. et al. Role of Krüppel-like factors in cancer stem cells. J Physiol Biochem 71, 155–164 (2015). https://doi.org/10.1007/s13105-015-0381-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-015-0381-4

Keywords

Navigation